03 Jul 2017Dario Cannone

In this blog series we’ll be experimenting with the most interesting blends of data and tools. Whether it’s mixing traditional sources with modern data lakes, open-source devops on the cloud with protected internal legacy tools, SQL with noSQL, web-wisdom-of-the-crowd with in-house handwritten notes, or IoT sensor data with idle chatting, we’re curious to find out: will they blend? Want to find out what happens when IBM Watson meets Google News, Hadoop Hive meets Excel, R meets Python, or MS Word meets MongoDB?

Read more


19 Jun 2017knime_admin

In a social networking era where a massive amount of unstructured data is generated every day, unsupervised topic modeling has became a very important task in the field of text mining. Topic modeling allows you to quickly summarize a set of documents to see which topics appear often; at that point, human input can be helpful to make sense of the topic content. As in any other unsupervised-learning approach, determining the optimal number of topics in a dataset is also a frequent problem in the topic modeling field.

Read more


07 Jun 2017phil

Everyone who has heard of KNIME Analytics Platform knows that KNIME has nodes. Thousands of them! The resources under the Learning Hub as well as the hundreds of public examples within KNIME Analytics Platform are all designed to get you up to speed with KNIME and its nodes. But those that know best how to use KNIME nodes are KNIME users themselves. What if we could capture all their insight and experience in understanding which nodes to use when and in what order and give you a recommendation? Well that is exactly what the KNIME Workflow Coach does.

Read more


22 May 2017rs

Do you remember the Iron Chef battles

It was a televised series of cook-offs in which famous chefs rolled up their sleeves to compete in making the perfect dish. Based on a set theme, this involved using all their experience, creativity and imagination to transform sometimes questionable ingredients into the ultimate meal.

Hey, isn’t that just like data transformation? Or data blending, or data manipulation, or ETL, or whatever new name is trending now? In this new blog series requested by popular vote, we will ask two data chefs to use all their knowledge and creativity to compete in extracting a given data set's most useful “flavors” via reductions, aggregations, measures, KPIs, and coordinate transformations. Delicious!

Want to find out how to prepare the ingredients for a delicious data dish by aggregating financial transactions, filtering out uninformative features or extracting the essence of the customer journey? Follow us here and send us your own ideas for the “Data Chef Battles” at datachef@knime.com.

Ingredient Theme: Customer Transactions. Money vs. Loyalty.

Read more


08 May 2017knime_admin

Authors: Iris Adä & Phil Winters

The benefits of using predictive analytics is now a given. In addition, the Data Scientist who does that is highly regarded but our daily work is full of contrasts. On the one hand, you can work with data, tools and techniques to really dive in and understand data and what it can do for you. On the other hand, there is usually quite a bit of administrative work around accessing data, massaging data and then putting that new insight into production - and keeping it there.

Read more


24 Apr 2017knime_admin

In this blog series we’ll be experimenting with the most interesting blends of data and tools. Whether it’s mixing traditional sources with modern data lakes, open-source devops on the cloud with protected internal legacy tools, SQL with noSQL, web-wisdom-of-the-crowd with in-house handwritten notes, or IoT sensor data with idle chatting, we’re curious to find out: will they blend? Want to find out what happens when IBM Watson meets Google News, Hadoop Hive meets Excel, R meets Python, or MS Word meets MongoDB?

Follow us here and send us your ideas for the next data blending challenge you’d like to see at willtheyblend@knime.com.

Today: Teradata Aster meets KNIME Table. What is that chest pain?

Read more


10 Apr 2017rs

In this blog series we’ll be experimenting with the most interesting blends of data and tools. Whether it’s mixing traditional sources with modern data lakes, open-source devops on the cloud with protected internal legacy tools, SQL with noSQL, web-wisdom-of-the-crowd with in-house handwritten notes, or IoT sensor data with idle chatting, we’re curious to find out: will they blend? Want to find out what happens when IBM Watson meets Google News, Hadoop Hive meets Excel, R meets Python, or MS Word meets MongoDB?

Follow us here and send us your ideas for the next data blending challenge you’d like to see at willtheyblend@knime.com.

Today: Blending Databases. A Database Jam Session

Read more


27 Mar 2017knime_admin

In this blog series we’ll be experimenting with the most interesting blends of data and tools. Whether it’s mixing traditional sources with modern data lakes, open-source devops on the cloud with protected internal legacy tools, SQL with noSQL, web-wisdom-of-the-crowd with in-house handwritten notes, or IoT sensor data with idle chatting, we’re curious to find out: will they blend? Want to find out what happens when IBM Watson meets Google News, Hadoop Hive meets Excel, R meets Python, or MS Word meets MongoDB?

Follow us here and send us your ideas for the next data blending challenge you’d like to see at willtheyblend@knime.com.

Today: YouTube Metadata meet WebLog Files. What will it be tonight – a movie or a book?

Read more


13 Mar 2017knime_admin

In this blog series we’ll be experimenting with the most interesting blends of data and tools. Whether it’s mixing traditional sources with modern data lakes, open-source devops on the cloud with protected internal legacy tools, SQL with noSQL, web-wisdom-of-the-crowd with in-house handwritten notes, or IoT sensor data with idle chatting, we’re curious to find out: will they blend? Want to find out what happens when IBM Watson meets Google News, Hadoop Hive meets Excel, R meets Python, or MS Word meets MongoDB?

Follow us here and send us your ideas for the next data blending challenge you’d like to see at willtheyblend@knime.com.

Today: Kindle epub meets image JPEG: Will KNIME make peace between the Capulets and the Montagues?

Read more


06 Mar 2017greglandrum

We’ve had a couple of posts in the past about creating RESTful services with the KNIME Analytics Platform and using the REST API provided by the KNIME Server. But since we keep adding functionality and making things easier, it’s worthwhile to occasionally come back and revisit the topic. This post will demonstrate a couple of changes since Jon’s last update.

Read more


Subscribe to KNIME news, usage, and development