KNIME Summits and Data Talks

Upcoming KNIME Data Talks

The KNIME Data Talks program includes insights on relevant data science trends and topics, presentations from KNIME users and the community, product updates, panel discussions, and workshops - all across a broad range of industries, use cases, and regions.

KNIME Fall Data Talks: September 29

Join us for some data science in action. Learn from data science challenges across verticals, connect with new and experienced members of the KNIME community, and peek over the shoulders of our developers.

Register Now

Recent Summits and Data Talks

Highlights, recordings, and slides from the most recent KNIME Data Talks and Summits:

KNIME Data Talks en Español

July 22, 2021: El evento realizado conjuntamente con nuestros socios IQuartil y ClearPeaks se enfocó en cómo la analítica soporta la toma de decisiones en los negocios.

More

KNIME Data Talks - Community Edition

July 7, 2021: These Data Talks focused on networking in the virtual meeting space, as well as highlighting updates from the latest software release.

More

KNIME Data Talks - Datenkultur

8. Juni 2021: Praxiserfahrungen zum Aufbau einer internen Commmunity und Etablierung einer zukunftsfähigen Datenkultur.

More

KNIME Data Talks - Brazil

May 18, 2021: Brazil realizado por nosso parceiro HupData focado em compartilhar experiências sobre Automação de Processos e Análise para Negócios usando KNIME.

More

KNIME Data Talks - Audit

May 11, 2021: Moderated by Mihály Medzihradszky and Jason Denzin, and discussing process automation and analytics for the audit practice using KNIME.

More

KNIME Data Talks - Lab Data

Apr 22, 2021: Moderated by Jeany Prinz and Alice Krebs and covering the challenges of digitalization initiatives in life science companies.

More

KNIME Spring Data Talks 2021

Mar 24, 2021: The first official KNIME Spring Data Talks, opened by Michael Berthold with "Visual Programming for Data Science".

More

KNIME Fall Summit 2020

Nov 18-20, 2020: Opened by Michael Berthold with "Closing the Gap in Data Science - The Complete Life Cycle".

More