Online Course

[L4-TS] Introduction to Time Series Analysis - Online

- - Online

This course introduces the main concepts behind Time Series Analysis, with an emphasis on forecasting applications: data cleaning, missing value imputation, time-based aggregation techniques, creation of a vector/tensor of past values, descriptive analysis, model training (from simple basic models to more complex statistics and machine learning based models), hyperparameter optimization, and model evaluation.

Learn how to implement all these steps using real-world time series datasets. Put what you’ve learnt into practice with the hands-on exercises.

This course consists of four, 90 minutes online sessions run by Professor Daniele Tonini and two of our KNIME data scientists. Each session has an exercise for you to complete at home. The course concludes with a 15 to 30 minute wrap up session.

Course Content

  • Session 1: Introduction to Time Series Analysis and KNIME Components
  • Session 2: Understanding Stationarity, Trend and Seasonality
  • Session 3: Naive Method, ARIMA models, Residual Analysis
  • Session 4: Machine Learning, Model Optimization, Deployment
  • Session 5: Recap and final Q&A
Download agenda
FAQ
What level of KNIME experience is needed for this course?

You must be competent in using KNIME Analytics Platform. We strongly recommend you be at the level of an advanced KNIME user -  for example you’ve taken a basic and advanced KNIME Analytics Platform Course and/or use KNIME on a regular basis.

How do I join the course?

You’ll receive a zoom link with your registration confirmation. Make sure you have a stable internet connection!

What if I miss a session? Will I be able to watch a replay?

Sure! The sessions will be recorded and you’ll have access to each one for seven days from the time the session is over.

What do I need to have?

Your own laptop, ideally pre-installed with the latest version of KNIME Analytics Platform.

Where do I find the latest version of KNIME Analytics Platform?

Download the latest free, open source version of KNIME here: knime.com/downloads.

What other resources will help me to get started with KNIME?