Inventory Level Optimization

Achieve the perfect trade-off between inventory costs and service level.

The Challenge

The supply chain is the cornerstone of any manufacturing or retail company. It also bears the most significant costs. Defining optimal inventory levels for warehouses through safety stock requires a deep understanding of suppliers’ behavior, usage and consumption of components, as well as a well-defined service level. The latter embodies the key decision of an Inventory Manager: the trade-off between inventory costs and stock level.

knime_icons_rz The Solution

A team of data scientists analyze the individual component level using historical data. To predict future consumption, they build and run an ARIMA time series analysis and deploy this as an Analytical Service for Inventory Managers. Automatically providing the expected supply and consumption levels, simplifies and raises the accuracy of the Inventory Manager’s job. By defining expected service levels, overstock/understock becomes clearly identifiable and in line with the agreed methodology and base data.

Download KNIME Workflow from KNIME Hub

 

Why KNIME Software

An ARIMA time series model created in KNIME Analytics Platform is deployed as an Analytical Service using KNIME Server. Via the KNIME WebPortal, Inventory Managers can view stock levels and write back the calculated order plan to the supply chain management system.

Download this Innovation Note as a PDF

Reach out to our Customer Care team to learn more about how KNIME can help you with your data projects and challenges.

Download KNIME

Download the free and open source KNIME Analytics Platform.

Download KNIME

More Solutions

Find out how other companies are using KNIME to solve their data challenges.

Read More