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Summary 
When starting to put together a new data science lab, very few things are clear: only that we need 
predictive models and that we need them to run on real data. Everything else, particularly how these 
goals can be reached, is usually unclear and needs to take shape over time. 

In this whitepaper we offer some advice about the script/workflow development process, predictive 
model building, deployment, and user access rights. Most of this advice is in the form of basic best 
practice guidelines, derived from our experience on a number of already running data science 
projects. 

Introduction 
When building a data science lab, as with any form of computing, we need to keep the process of 
software creation (development and testing) separated from the process of running that same 
software on real life data (production). In a data science lab, such software should cover the whole 
life span of a predictive model: training, evaluation, and deployment. In addition, different users, 
with different user roles and permissions, should be responsible for different parts of the software 
development cycle and/or of the model building cycle.  

In order to provide first level help, we share a few basic guidelines here about how to implement the 
different phases of software development and model building, how to bind them to different virtual 
or physical environments, and how to guarantee access to some users and deny it to others, for any 
organization size and data science requirements.  

Following these guidelines as early as the pilot phase, allows for easier scaling of the Data Science 
Lab IT architecture later, if/once it moves to a more sophisticated productive set-up. 

Software Development vs. Model Building 
The life of a data scientist involves switching between programming and mathematical models. 
Her/his daily routine consists of training and applying data-driven models to defined prediction tasks 
and of creating scripts and workflows to train and apply said models, maybe even “in real time”.  

Processes vs. Prototypes 
In a data science lab a number of workflows/scripts will generally be run on a daily (and nightly) basis 
for the purpose of preparing historical data, creating reports, training and evaluating models, 
applying models to real life data, possibly gaining insights about the underlying system, and taking 
consequent actions.  

Some of these workflows run recurrently, some only once in the data science lab lifetime: this is the 
difference between processes and prototypes. 

Prototypes 

If you want a result only once and never again, there's not much to it - you just do it: fire up KNIME 
Analytics Platform (www.knime.com), create your workflows, gain your insight, save your results: be 
happy.  

Ad hoc reports, one time data selections for specific campaigns, and one time only statistics all 
belong to the prototype workflow/script category. While it is important for the data science lab to 

http://www.knime.com/
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work with a tool flexible enough to allow for agile and yet reliable prototyping, these kinds of 
workflows are not the main focus of this whitepaper. 

Recurring Processes 

Workflows implemented for recurring processes are run regularly and make the results available to a 
wider audience than just the workflow committer and the workflow developer. Such workflows need 
to be developed and tested thoroughly and accurately. Only after they have passed an exhaustive 
suite of test cases, to make them abundantly secure and bug free, are they ready to be moved into 
production. In production they will run regularly and produce results for others to consume.   

This whole “development - testing - production” journey needs to be monitored and must comply 
with a series of milestones, i.e. there needs to be a process in which all steps are clearly designed, 
milestones clearly identified, and resulting directions clearly defined. 

CRISP-DM: the data analysis cycle 

The majority of recurring workflows in a data science lab deals with creating and applying data-
driven models, regularly and at fixed times. The creation of a data-driven model using data mining 
techniques is not a one stop shop only. It requires a number of trials to investigate the data, select 
the best model for the task, optimize the selected model, and so on. It requires a mixture of data 
mining knowledge, business knowledge, and experience in model optimization. The steps are not set 
in stone, but guidelines are supplied for example through the CRISP-DM process. 

CRISP-DM [1] (CRoss Industry Standard Process for Data Mining) is a standard process for data mining 
solutions and it includes a number of stages: Business Understanding, Data Understanding, Data 
Preparation, Modeling, Evaluation, and Deployment. 

Figure 1. Phases of CRISP-DM by Wikipedia  
(https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining, CC BY-SA 3.0) 

 

https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
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Assuming that we already have a clear business understanding of the project and, through a series of 
previous exploratory prototypes, the nature of the data is known well enough, we will focus here on 
the last 4 stages of the CRISP-DM life cycle. 

Data Preparation includes all those cleaning, aggregation, and generally data manipulation 
operations to move from the original raw mess of data to a more structured and informative data 
table. A typical example in a CRM data set can be seen in the aggregation of values from a list of 
contracts into two groups of values, describing each customer in terms of revenues and loyalty. 

Modeling includes the training of a model by means of a machine learning or statistical algorithm 
based on a set of data for a specific task, be it prediction or clustering. Modeling can be re-triggered 
after the first time, when the performance of the model becomes less satisfactory. 

Evaluation requires testing the trained model performance on new data. This step is critical to get an 
idea of how the model will perform in real life conditions. Not only is this step necessary when 
creating the model the first time, but it needs to be regularly repeated to guarantee the model 
functioning properly over time. Data, like people, change over time. A successful model today might 
be obsolete in a few months. We need to re-evaluate its effectiveness periodically. 

Deployment switches the model to run on (score) real life data at specific times. Sometimes the 
model might be required to score new incoming data in real time. 

Workflow Development for Model Building 
Each CRISP-DM phase requires a potentially different set of workflows to implement the task. We 
might need a workflow to prepare the data, a workflow to create and train the model, a workflow to 
test the model, and a workflow to deploy the model. Each one of these workflows needs to be 
developed, tested, and finally executed on real life data, like any other script or program. That is, 
each workflow implementing a CRISP-DM phase has to go through "development", "test", and 
"production".  

Workflow 
CRISP-DM 

Development Test Production 

Data 
Preparation 

Create a workflow to load, 
clean, enrich, deal with missing 
values, and transform your 
data. 

Test the workflow for errors 
against new and unexpected 
data situations, e.g. more 
columns. 

Run regularly in a DWH 
production 
environment to collect, 
prepare, and structure 
all incoming data. 

Model 
Training 

Define task and extract a 
sufficiently representative 
training set. Create a workflow 
to train a model on the training 
set. 

Verify that the workflow 
trains the model even when 
the data change, e.g. with 
more missing values. 

Create new models, 
regularly or in the event 
that previous models 
become obsolete or not 
existent. 

Model 
Evaluation 

Create a workflow to assess 
and monitor model 
performance. Define lowest 
tolerable performance limit. 

Verify that the workflow 
directs process to re-training 
or deployment correctly, 
even when the data change. 

Assess model quality 
periodically. 

Model 
Deployment 

Create workflow to apply 
accepted model to "real life 
data". 

Check workflow performance 
in real life conditions (speed, 
changing data, locale, etc...). 

Process data regularly 
for real and send results 
for decision making. 
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In order to avoid confusing terms, in the following section we will distinguish between “model 
training”, “model evaluation”, and “model deployment” on the one hand and “workflow 
development”, “workflow testing”, and “workflow production” on the other. The table below shows 
the three different stages (development, testing, and production) required for each workflow 
implementing a phase in the CRISP-DM process. 

It is good practice to separate training from deployment in two separate workflows. Deployment is 
run frequently: whenever new data comes in. Training, in comparison, is triggered only to run when 
models prove to be obsolete. Separating the two phases allows for a faster execution of the 
deployment workflow. 

Data and Machine Architecture 
The data and machine architecture must mirror the workflow development phases, which, as we 
have seen, are different from the model building phases. Workflow development phases include 
development, testing, and production. 

It is good practice to keep the workflow development phases in separate environments. This, for 
example, prevents polluting production data with occasional development mistakes. 

Environments 
Environment separation means segregated data and workflow regions - or even machines. In 
addition to the three mentioned environments, we could optionally add a fourth one for pre-
production / fail over / fall back. This last environment is usually designed to take over production if a 
catastrophic event hits the production region or machine. 

The segregation can be done logically (separated regions on the same machine) or physically 
(separated machines); it must cover the workflows, data, and meta nodes, and needs dedicated 
environments for: 

 Development  

 Testing  

 Production 

 Pre-Production (PreProd)/Fail-over/Fall back (optional) 

Machine and Data Architecture 
Production 
The production environment is the most delicate one, since it runs the workflows for real on real 
data. This means it has to be strongly protected from external intrusions and updated regularly.  

In production, a full DataWareHousing (DWH) solution is usually necessary, requiring remote 
execution, scheduling, rollover, versioning, user authentication, access rights, resource sharing, 
interactive dashboard, and communication through a REST/API interface.  

This is indeed the phase in which the enterprise features of KNIME Server are of particular benefit in 
order to guarantee a reliable orchestration, scheduling, and execution of the processes, the 
environment integrity, and resource sharing. 

Leveraging the openness of the KNIME platform, it is also possible to mix and match execution 
engines within a KNIME workflow.  

https://www.knime.org/knime-server
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For example, the first pre-processing phase might run completely in-database on a big data platform 
using the nodes for in-database processing, i.e. database connectors and database manipulation 
nodes. Running the pre-processing part of the workflow on a big data parallelized platform could 
speed up the workflow execution. 

It is also possible to run R, Python, Spark, Weka, and any other external tool or script from within a 
KNIME workflow. This feature extends KNIME functionality to include compatibility with all available 
file formats and machine learning algorithms. 

Given KNIME’s abundant capabilities to connect to different sources and tools, it can also act as a 
“layer of indirection” to decouple your projects from the fluctuating technology stack. 

The production environment needs to access different data sources: files and databases locally and in 
the cloud; data lakes; results from external applications via files or REST services; results from other 
KNIME workflows, again via files or REST services; operational data from CRM, ERP, and other similar 
storage tools; traditional data marts; web APIs; social media; remote repositories; and probably more 
by the time this whitepaper is published.   

The production environment also needs to access and/or trigger a wide range of different tools: big 
data platforms; streaming engines; analytical tools; statistical tools; business knowledge; business 
related applications; REST services; API services; and more. 

The figure below shows a possible instance of a production environment, with probably just a subset 
of the required connections to data and tool sources. 

Figure 2. Data and Service Architecture in Production, centered on KNIME Server 

 
 
Pre-Production/Fail Over / Fall Back 
Pre-Production/Fail Over/Fall Back environment is usually an exact, separate copy of the production 
environment, updated as regularly in terms of workflows, data, and metanodes as the production 
environment. 
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Development 

The same architecture as in production and in pre-production is replicated on a smaller scale for the 
development and testing environments. 

The development phase needs a location where all of the temporary workflows currently under 
development can be stored. This location can be the open source KNIME Analytics Platform on the 
developer’s machine.  

However, KNIME Analytics Platform alone does not provide for the sufficient sharing of resources. 
There the only possible way to share workflows across different instances of KNIME Analytics 
Platforms is to use the Import / Export Workflow option in the File menu. Similarly, the only possible 
way to reuse meta-nodes is through copy and paste.  

A more professional approach to workflow development requires a more flexible feature for 
resource sharing. This can be obtained via KNIME Team Space or KNIME Server, depending on the 
development group size. 

A separate set of data has to be used for development. This does not need to be an exact 
reproduction of the productive data set. A data subset of sufficient generality, updated every now 
and then, would probably suffice. 

Testing 

The testing environment needs to run test cases workflows on test data, collect results, and produce 
a stability report.  

Let us now talk briefly about workflow testing, even though most programmers are already familiar 
with it. Testing can assume many different forms. 

- Unit testing: small test samples with defined outcome to make sure that the workflow works 

as it should in all its pieces 

- Regression testing: test samples aimed to assess whether the workflow still works as in the 

past or whether we have introduced new unknown bugs 

- Stress testing: test samples for speed and performances under stress conditions (overloaded 

machines or large amounts of data for example) 

- Automation: scripts to run previous tests regularly and automatically, generating alarms 

when results do not compare as they should 

About testing, in the KNIME Node Development Tools extension, part of the open source release, you 
can find a “KNIME Testing Framework” package, including a “Testing” category with a number of 
nodes specifically developed for workflow testing. This extension is part of the free KNIME Analytics 
Platform.  

After installing the extension, the “Testing” category appears in the Node Repository. This kind of 
category contains nodes such as: 

- Fail in Execution, to simulate failing nodes 

- A number of Difference Checker nodes (Table, File, PMML, Model Content, Image, …), to 

compare with gold standards 

- Test Data Generator, to create test data 

- Table Validator, to fail the test if some pre-defined conditions are not met 

https://www.knime.org/knime
https://www.knime.org/knime-teamspace
https://www.knime.org/knime-server
https://www.knime.org/knime
https://www.knime.org/knime
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- And many other nodes to help with workflow testing 

Some nodes, among many others, that might be of help when automating workflow testing could be: 

- Send Email, to send an email with testing results 

- Time Difference, for speed testing 

- Timer Info and Global Timer Info, to collect statistics about individual and overall execution 

of workflows 

Besides the KNIME Testing Framework you also need a test data set in order to create and run test 
cases. If the development data set is sufficiently general and updated frequently enough, this could 
also be used as a test data set. Otherwise a special data set has to be created for testing and 
maintained regularly. This data set needs to cover all possible data constellations, from the most 
frequent and intuitive to the rarest and weirdest ones.  

Figure 3 shows the full machine and data architecture, with the testing, development, and pre-
production environments as replicas on different scales of the production environment.  

Figure 3. Full Machine Architecture with Development, Testing, Production, and Fall Back Environments for all workflows 
implementing Model Training, Model Testing, and Model Deployment. Workflows move from Development to Testing, 

to Fall back/Fail over, and to Production. Fall-back Data are a copy of Productive Data. Data for Development and Testing 
are a Subset of Fall-back (= Productive) Data. 

 

The cycle in figure 3 starts with the development environment when a new workflow is created. For 
every new feature added to the workflow during development, a test case has to be designed and 
added to the testing environment. After development, the workflow is then moved into the testing 
area to be thoroughly tested. If the workflow passes all test cases, it is considered ready for release 
and can be moved into the production and fall-back area.  

Sizing the Machines 
Sizing the machines for each environment is more of an art than a science. Too much depends on 
external factors like data amount, response requirements, processing mode (batch vs. streaming), 
etc. There are no rules, for example that “you need so many GB of RAM for every TB of storage”. 
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Typically, I/O is the bottleneck, so more RAM and more and faster disks are always a good idea. Only 
when you saturate your internal bus with data, you will need to think about faster CPUs.  

In order to increase the amount of memory available to KNIME Analytics Platform, you can change 
the –Xmx parameter in the knime.ini file to 16G for example, providing you have more than 16G RAM 
available on your machine. 

In order to increase the execution speed of a single node, you can enable the option “Keep all in 
memory” in the Memory Policy tab of the configuration window of each node. This option forces all 
input data into memory for execution. The only caveat here is to check whether your machine can 
handle such a memory load. 

Roles in a Data Science Lab 
Working in the environments described above requires several roles, which, of course, can be played 
by a single person. However each role requires a different mindset and access rights. 

The administrator is responsible for setting up and configuring the machines, the environments, the 
repositories, as well as monitoring the data update and exchange. For each environment, repository, 
and machine, he/she needs to set up user permissions, backups, and the process schedule.  

The workflow developer creates, updates, and corrects workflows and corresponding initial test data 
sets, committing them to the workflow and the data repository respectively. She/he is also 
responsible for the creation and maintenance of possible metanode templates. 

The workflow tester verifies the correct functioning of the workflows, logic- and execution-wise. 
He/she is responsible to expand the original test set to cover increasing data occurrences ‒ from 
standard occurrences to infrequent unintuitive occurrences and to develop the test procedures. Test 
cases range from unit tests and complete test sets through to stress test sets.  

The data scientist builds, evaluates, and monitors BI reports and predictive models, using ad hoc 
developed workflows or regularly scheduled workflows.  

The operator deploys the workflows and models in production, once she/he gets the “go” signal 
from the tester and the data scientist. She/he needs to make sure that workflows and models are 
run/used according to the design specs. 

Conclusions 
We have tried here to provide a few guidelines based on our experience about the DWH 
infrastructure needed for a data science lab: environment segregation, testing, data sets, role 
management, user permission, resource sharing, user authentication, rollover, versioning, 
dashboards, and more features needed in a modern data science lab. 
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