

Copyright © 2015 by KNIME.com AG all rights reserved page 1

Data and Machine Architecture for the

Data Science Lab
Workflow Development, Testing, and Production for

Model Training, Evaluation, and Deployment

Rosaria Silipo Rosaria.Silipo@knime.com
Marco A. Zimmer maz@mbrane.ch

mailto:Rosaria.Silipo@knime.com

Copyright © 2015 by KNIME.com AG all rights reserved page 2

Table of Contents
Data and Machine Architecture for the Data Science Lab Workflow Development, Testing,
and Production for Model Training, Evaluation, and Deployment .. 1

Table of Contents .. 2

Summary ... 3

Introduction ... 3

Software Development vs. Model Building ... 3

Processes vs. Prototypes ... 3

CRISP-DM: the data analysis cycle ... 4

Workflow Development for Model Building ... 5

Data and Machine Architecture .. 6

Environments .. 6

Sizing the Machines ... 9

Roles in a Data Science Lab ... 10

Conclusions .. 10

References ... 10

Copyright © 2015 by KNIME.com AG all rights reserved page 3

Summary
When starting to put together a new data science lab, very few things are clear: only that we need
predictive models and that we need them to run on real data. Everything else, particularly how these
goals can be reached, is usually unclear and needs to take shape over time.

In this whitepaper we offer some advice about the script/workflow development process, predictive
model building, deployment, and user access rights. Most of this advice is in the form of basic best
practice guidelines, derived from our experience on a number of already running data science
projects.

Introduction
When building a data science lab, as with any form of computing, we need to keep the process of
software creation (development and testing) separated from the process of running that same
software on real life data (production). In a data science lab, such software should cover the whole
life span of a predictive model: training, evaluation, and deployment. In addition, different users,
with different user roles and permissions, should be responsible for different parts of the software
development cycle and/or of the model building cycle.

In order to provide first level help, we share a few basic guidelines here about how to implement the
different phases of software development and model building, how to bind them to different virtual
or physical environments, and how to guarantee access to some users and deny it to others, for any
organization size and data science requirements.

Following these guidelines as early as the pilot phase, allows for easier scaling of the Data Science
Lab IT architecture later, if/once it moves to a more sophisticated productive set-up.

Software Development vs. Model Building
The life of a data scientist involves switching between programming and mathematical models.
Her/his daily routine consists of training and applying data-driven models to defined prediction tasks
and of creating scripts and workflows to train and apply said models, maybe even “in real time”.

Processes vs. Prototypes
In a data science lab a number of workflows/scripts will generally be run on a daily (and nightly) basis
for the purpose of preparing historical data, creating reports, training and evaluating models,
applying models to real life data, possibly gaining insights about the underlying system, and taking
consequent actions.

Some of these workflows run recurrently, some only once in the data science lab lifetime: this is the
difference between processes and prototypes.

Prototypes

If you want a result only once and never again, there's not much to it - you just do it: fire up KNIME
Analytics Platform (www.knime.com), create your workflows, gain your insight, save your results: be
happy.

Ad hoc reports, one time data selections for specific campaigns, and one time only statistics all
belong to the prototype workflow/script category. While it is important for the data science lab to

http://www.knime.com/

Copyright © 2015 by KNIME.com AG all rights reserved page 4

work with a tool flexible enough to allow for agile and yet reliable prototyping, these kinds of
workflows are not the main focus of this whitepaper.

Recurring Processes

Workflows implemented for recurring processes are run regularly and make the results available to a
wider audience than just the workflow committer and the workflow developer. Such workflows need
to be developed and tested thoroughly and accurately. Only after they have passed an exhaustive
suite of test cases, to make them abundantly secure and bug free, are they ready to be moved into
production. In production they will run regularly and produce results for others to consume.

This whole “development - testing - production” journey needs to be monitored and must comply
with a series of milestones, i.e. there needs to be a process in which all steps are clearly designed,
milestones clearly identified, and resulting directions clearly defined.

CRISP-DM: the data analysis cycle

The majority of recurring workflows in a data science lab deals with creating and applying data-
driven models, regularly and at fixed times. The creation of a data-driven model using data mining
techniques is not a one stop shop only. It requires a number of trials to investigate the data, select
the best model for the task, optimize the selected model, and so on. It requires a mixture of data
mining knowledge, business knowledge, and experience in model optimization. The steps are not set
in stone, but guidelines are supplied for example through the CRISP-DM process.

CRISP-DM [1] (CRoss Industry Standard Process for Data Mining) is a standard process for data mining
solutions and it includes a number of stages: Business Understanding, Data Understanding, Data
Preparation, Modeling, Evaluation, and Deployment.

Figure 1. Phases of CRISP-DM by Wikipedia
(https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining, CC BY-SA 3.0)

https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining

Copyright © 2015 by KNIME.com AG all rights reserved page 5

Assuming that we already have a clear business understanding of the project and, through a series of
previous exploratory prototypes, the nature of the data is known well enough, we will focus here on
the last 4 stages of the CRISP-DM life cycle.

Data Preparation includes all those cleaning, aggregation, and generally data manipulation
operations to move from the original raw mess of data to a more structured and informative data
table. A typical example in a CRM data set can be seen in the aggregation of values from a list of
contracts into two groups of values, describing each customer in terms of revenues and loyalty.

Modeling includes the training of a model by means of a machine learning or statistical algorithm
based on a set of data for a specific task, be it prediction or clustering. Modeling can be re-triggered
after the first time, when the performance of the model becomes less satisfactory.

Evaluation requires testing the trained model performance on new data. This step is critical to get an
idea of how the model will perform in real life conditions. Not only is this step necessary when
creating the model the first time, but it needs to be regularly repeated to guarantee the model
functioning properly over time. Data, like people, change over time. A successful model today might
be obsolete in a few months. We need to re-evaluate its effectiveness periodically.

Deployment switches the model to run on (score) real life data at specific times. Sometimes the
model might be required to score new incoming data in real time.

Workflow Development for Model Building
Each CRISP-DM phase requires a potentially different set of workflows to implement the task. We
might need a workflow to prepare the data, a workflow to create and train the model, a workflow to
test the model, and a workflow to deploy the model. Each one of these workflows needs to be
developed, tested, and finally executed on real life data, like any other script or program. That is,
each workflow implementing a CRISP-DM phase has to go through "development", "test", and
"production".

Workflow
CRISP-DM

Development Test Production

Data
Preparation

Create a workflow to load,
clean, enrich, deal with missing
values, and transform your
data.

Test the workflow for errors
against new and unexpected
data situations, e.g. more
columns.

Run regularly in a DWH
production
environment to collect,
prepare, and structure
all incoming data.

Model
Training

Define task and extract a
sufficiently representative
training set. Create a workflow
to train a model on the training
set.

Verify that the workflow
trains the model even when
the data change, e.g. with
more missing values.

Create new models,
regularly or in the event
that previous models
become obsolete or not
existent.

Model
Evaluation

Create a workflow to assess
and monitor model
performance. Define lowest
tolerable performance limit.

Verify that the workflow
directs process to re-training
or deployment correctly,
even when the data change.

Assess model quality
periodically.

Model
Deployment

Create workflow to apply
accepted model to "real life
data".

Check workflow performance
in real life conditions (speed,
changing data, locale, etc...).

Process data regularly
for real and send results
for decision making.

Copyright © 2015 by KNIME.com AG all rights reserved page 6

In order to avoid confusing terms, in the following section we will distinguish between “model
training”, “model evaluation”, and “model deployment” on the one hand and “workflow
development”, “workflow testing”, and “workflow production” on the other. The table below shows
the three different stages (development, testing, and production) required for each workflow
implementing a phase in the CRISP-DM process.

It is good practice to separate training from deployment in two separate workflows. Deployment is
run frequently: whenever new data comes in. Training, in comparison, is triggered only to run when
models prove to be obsolete. Separating the two phases allows for a faster execution of the
deployment workflow.

Data and Machine Architecture
The data and machine architecture must mirror the workflow development phases, which, as we
have seen, are different from the model building phases. Workflow development phases include
development, testing, and production.

It is good practice to keep the workflow development phases in separate environments. This, for
example, prevents polluting production data with occasional development mistakes.

Environments
Environment separation means segregated data and workflow regions - or even machines. In
addition to the three mentioned environments, we could optionally add a fourth one for pre-
production / fail over / fall back. This last environment is usually designed to take over production if a
catastrophic event hits the production region or machine.

The segregation can be done logically (separated regions on the same machine) or physically
(separated machines); it must cover the workflows, data, and meta nodes, and needs dedicated
environments for:

 Development

 Testing

 Production

 Pre-Production (PreProd)/Fail-over/Fall back (optional)

Machine and Data Architecture
Production
The production environment is the most delicate one, since it runs the workflows for real on real
data. This means it has to be strongly protected from external intrusions and updated regularly.

In production, a full DataWareHousing (DWH) solution is usually necessary, requiring remote
execution, scheduling, rollover, versioning, user authentication, access rights, resource sharing,
interactive dashboard, and communication through a REST/API interface.

This is indeed the phase in which the enterprise features of KNIME Server are of particular benefit in
order to guarantee a reliable orchestration, scheduling, and execution of the processes, the
environment integrity, and resource sharing.

Leveraging the openness of the KNIME platform, it is also possible to mix and match execution
engines within a KNIME workflow.

https://www.knime.org/knime-server

Copyright © 2015 by KNIME.com AG all rights reserved page 7

For example, the first pre-processing phase might run completely in-database on a big data platform
using the nodes for in-database processing, i.e. database connectors and database manipulation
nodes. Running the pre-processing part of the workflow on a big data parallelized platform could
speed up the workflow execution.

It is also possible to run R, Python, Spark, Weka, and any other external tool or script from within a
KNIME workflow. This feature extends KNIME functionality to include compatibility with all available
file formats and machine learning algorithms.

Given KNIME’s abundant capabilities to connect to different sources and tools, it can also act as a
“layer of indirection” to decouple your projects from the fluctuating technology stack.

The production environment needs to access different data sources: files and databases locally and in
the cloud; data lakes; results from external applications via files or REST services; results from other
KNIME workflows, again via files or REST services; operational data from CRM, ERP, and other similar
storage tools; traditional data marts; web APIs; social media; remote repositories; and probably more
by the time this whitepaper is published.

The production environment also needs to access and/or trigger a wide range of different tools: big
data platforms; streaming engines; analytical tools; statistical tools; business knowledge; business
related applications; REST services; API services; and more.

The figure below shows a possible instance of a production environment, with probably just a subset
of the required connections to data and tool sources.

Figure 2. Data and Service Architecture in Production, centered on KNIME Server

Pre-Production/Fail Over / Fall Back
Pre-Production/Fail Over/Fall Back environment is usually an exact, separate copy of the production
environment, updated as regularly in terms of workflows, data, and metanodes as the production
environment.

Copyright © 2015 by KNIME.com AG all rights reserved page 8

Development

The same architecture as in production and in pre-production is replicated on a smaller scale for the
development and testing environments.

The development phase needs a location where all of the temporary workflows currently under
development can be stored. This location can be the open source KNIME Analytics Platform on the
developer’s machine.

However, KNIME Analytics Platform alone does not provide for the sufficient sharing of resources.
There the only possible way to share workflows across different instances of KNIME Analytics
Platforms is to use the Import / Export Workflow option in the File menu. Similarly, the only possible
way to reuse meta-nodes is through copy and paste.

A more professional approach to workflow development requires a more flexible feature for
resource sharing. This can be obtained via KNIME Team Space or KNIME Server, depending on the
development group size.

A separate set of data has to be used for development. This does not need to be an exact
reproduction of the productive data set. A data subset of sufficient generality, updated every now
and then, would probably suffice.

Testing

The testing environment needs to run test cases workflows on test data, collect results, and produce
a stability report.

Let us now talk briefly about workflow testing, even though most programmers are already familiar
with it. Testing can assume many different forms.

- Unit testing: small test samples with defined outcome to make sure that the workflow works

as it should in all its pieces

- Regression testing: test samples aimed to assess whether the workflow still works as in the

past or whether we have introduced new unknown bugs

- Stress testing: test samples for speed and performances under stress conditions (overloaded

machines or large amounts of data for example)

- Automation: scripts to run previous tests regularly and automatically, generating alarms

when results do not compare as they should

About testing, in the KNIME Node Development Tools extension, part of the open source release, you
can find a “KNIME Testing Framework” package, including a “Testing” category with a number of
nodes specifically developed for workflow testing. This extension is part of the free KNIME Analytics
Platform.

After installing the extension, the “Testing” category appears in the Node Repository. This kind of
category contains nodes such as:

- Fail in Execution, to simulate failing nodes

- A number of Difference Checker nodes (Table, File, PMML, Model Content, Image, …), to

compare with gold standards

- Test Data Generator, to create test data

- Table Validator, to fail the test if some pre-defined conditions are not met

https://www.knime.org/knime
https://www.knime.org/knime-teamspace
https://www.knime.org/knime-server
https://www.knime.org/knime
https://www.knime.org/knime

Copyright © 2015 by KNIME.com AG all rights reserved page 9

- And many other nodes to help with workflow testing

Some nodes, among many others, that might be of help when automating workflow testing could be:

- Send Email, to send an email with testing results

- Time Difference, for speed testing

- Timer Info and Global Timer Info, to collect statistics about individual and overall execution

of workflows

Besides the KNIME Testing Framework you also need a test data set in order to create and run test
cases. If the development data set is sufficiently general and updated frequently enough, this could
also be used as a test data set. Otherwise a special data set has to be created for testing and
maintained regularly. This data set needs to cover all possible data constellations, from the most
frequent and intuitive to the rarest and weirdest ones.

Figure 3 shows the full machine and data architecture, with the testing, development, and pre-
production environments as replicas on different scales of the production environment.

Figure 3. Full Machine Architecture with Development, Testing, Production, and Fall Back Environments for all workflows
implementing Model Training, Model Testing, and Model Deployment. Workflows move from Development to Testing,

to Fall back/Fail over, and to Production. Fall-back Data are a copy of Productive Data. Data for Development and Testing
are a Subset of Fall-back (= Productive) Data.

The cycle in figure 3 starts with the development environment when a new workflow is created. For
every new feature added to the workflow during development, a test case has to be designed and
added to the testing environment. After development, the workflow is then moved into the testing
area to be thoroughly tested. If the workflow passes all test cases, it is considered ready for release
and can be moved into the production and fall-back area.

Sizing the Machines
Sizing the machines for each environment is more of an art than a science. Too much depends on
external factors like data amount, response requirements, processing mode (batch vs. streaming),
etc. There are no rules, for example that “you need so many GB of RAM for every TB of storage”.

Copyright © 2015 by KNIME.com AG all rights reserved page 10

Typically, I/O is the bottleneck, so more RAM and more and faster disks are always a good idea. Only
when you saturate your internal bus with data, you will need to think about faster CPUs.

In order to increase the amount of memory available to KNIME Analytics Platform, you can change
the –Xmx parameter in the knime.ini file to 16G for example, providing you have more than 16G RAM
available on your machine.

In order to increase the execution speed of a single node, you can enable the option “Keep all in
memory” in the Memory Policy tab of the configuration window of each node. This option forces all
input data into memory for execution. The only caveat here is to check whether your machine can
handle such a memory load.

Roles in a Data Science Lab
Working in the environments described above requires several roles, which, of course, can be played
by a single person. However each role requires a different mindset and access rights.

The administrator is responsible for setting up and configuring the machines, the environments, the
repositories, as well as monitoring the data update and exchange. For each environment, repository,
and machine, he/she needs to set up user permissions, backups, and the process schedule.

The workflow developer creates, updates, and corrects workflows and corresponding initial test data
sets, committing them to the workflow and the data repository respectively. She/he is also
responsible for the creation and maintenance of possible metanode templates.

The workflow tester verifies the correct functioning of the workflows, logic- and execution-wise.
He/she is responsible to expand the original test set to cover increasing data occurrences ‒ from
standard occurrences to infrequent unintuitive occurrences and to develop the test procedures. Test
cases range from unit tests and complete test sets through to stress test sets.

The data scientist builds, evaluates, and monitors BI reports and predictive models, using ad hoc
developed workflows or regularly scheduled workflows.

The operator deploys the workflows and models in production, once she/he gets the “go” signal
from the tester and the data scientist. She/he needs to make sure that workflows and models are
run/used according to the design specs.

Conclusions
We have tried here to provide a few guidelines based on our experience about the DWH
infrastructure needed for a data science lab: environment segregation, testing, data sets, role
management, user permission, resource sharing, user authentication, rollover, versioning,
dashboards, and more features needed in a modern data science lab.

References
1. Cross- Industry Standard Process for Data Mining - CRISP-DM Process definition on Wikipedia

http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining

2. KNIME Analytics Platform www.knime.org

http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
http://www.knime.org/

