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Summary 
In this whitepaper, we present the start of a new project about the analysis of time series data, 
originating from a network of sensors around a working rotor. The rotor has one breakdown episode 
which we would like to predict, not only to avoid major damage of course, but also to keep extend the 
service life of the rotor and amortize its costs. 

This is a classic problem of anomaly detection: predicting a major damage episode with no other 
examples than its available history of normal functioning. Anomaly detection is a very challenging data 
analytics use case. Here, we cannot use the classical supervised classification algorithms, because no 
known similar damage episodes are available at any point of the historical data. The challenge then is 
to classify something we have never seen before: it is more or less like having a crystal ball! 

There are a few established techniques in the area of anomaly detection. However, if and when they 
fall short, creative skills are required.  

This is the first of a series of whitepapers to deal with anomaly detection from different perspectives. 
In particular, here we describe the first project steps: pre-processing and visualization of the sensor 
based time series data. Before we proceed with more complex data analytics, we need to clean and 
suitably quantify the data and visually explore their evolution.  

This whitepaper prepares the FFT processed time series data from the rotor sensors for further 
analytics by averaging spectral amplitudes by date and frequency bin and performing the time 
alignment across all of the time series. Time alignment and frequency binning are not uncommon 
procedures in the analysis of sensor data, like for example Internet of Things data sets. Next, the time 
series evolution is explored visually by means of five different visualization techniques: line plots, 
scatter matrices, auto-correlation maps, correlation maps, and heat maps. 

The workflow used in this whitepaper is available on the KNIME EXAMPLES server under 
050_Applications/050017_AnomalyDetection. This workflow group also contains a reduced data set in 
folder data, to run the workflow. The full original data set can be downloaded from 
http://www.knime.org/files/AnomalyDetectionFullDataSet.zip 

Anomaly Detection: Ideal Prediction Foresees Failures Before They 

Occur 
We are all witnessing the current explosion of data: social media data, clinical data, system data, CRM 
data, web data, and lately tons of sensor data! With the advent of the Internet of Things, systems and 
monitoring applications are producing humongous amounts of data which undergo evaluation to 
optimize costs and benefits, predict future events, classify behaviors, implement quality control, and 
more. All these use cases are relatively well established by now: a goal is defined, a target class is 
selected, a model is trained to recognize/predict the target, and the same model is applied to new 
never-seen-before productive data. 

The newest challenge now lies in predicting the “unknown”. The “unknown” is an event that is not part 
of the system past, an event that cannot be found in the system historical data. In the case of network 
data the “unknown” event can be an intrusion, in medicine a sudden pathological status, in sales or 
credit card businesses a fraudulent payment, and finally, in machinery, a mechanical piece breakdown. 
A high value, in terms of money, life expectancy, and/or time, is usually associated with the early 
discovery, warning, prediction, and/or prevention of the “unknown” and, most likely, undesirable 
event. 

http://www.knime.org/files/AnomalyDetectionFullDataSet.zip
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Specifically, prediction of “unknown” disruptive events in the field of mechanical maintenance takes 
the name of “anomaly detection”.  

If you look in the accredited literature or surf on the web, you will find that the term “anomaly 
detection” is actually used to indicate very different problems relying on different data analytics 
approaches. We could summarize the contexts in which the term “anomaly detection” is used with 
three possible situations: 

- Supervised Anomaly Detection 

A group of records is labeled as “anomaly” and the goal is to classify the records as such. This is a 
typical problem, for example, in medicine, where a recurring or chronic anomaly needs to be 
properly classified for a correct diagnosis. This, however, is just a classification problem, where one 
of the classes happens to be labeled as “anomaly”. 

- Static Unsupervised Anomaly Detection 

A number of labeled classes are available in the historical data, but suddenly a weird unrecognized 
outlier pattern shows up and does not fit any of the available class typologies. Like a random 
unknown heartbeat in the middle of a series of standard normal heartbeats during an ECG session. 
Either benign or worrisome, an alarm must be triggered. 

- Dynamic Unsupervised Anomaly Detection 

Here some measures change slowly over time, indicating a slow deviation from the past standards 
until a catastrophic event occurs. For example, while a motor is slowly deteriorating, one of the 
measurements will change gradually until eventually the motor breaks. On the one hand we want 
to keep the motor running as long as possible – mechanical pieces are expensive! ‒ on the other, 
we want to avoid the motor breaking down completely, producing even more damage.  

The problem we are going to deal with in this whitepaper belongs to the second and third groups: 
unsupervised anomaly detection. We have no examples of the catastrophic event in our historical data 
‒ luckily – however we still want to predict the breakdown early enough to prevent the catastrophe 
from striking. 

There is a lot of data that lends itself to unsupervised anomaly detection use cases: turbines, rotors, 
chemical reactions, medical signals, spectroscopy, and so on. In this whitepaper we deal with rotor 
data. 

The Data 
The main problem in putting together a public workflow for anomaly detection is actually the lack of 
publicly available data, at least for unsupervised anomaly detection problems. After quite an 
extenuating search for publicly available data, we ended up using a data set from an anonymous donor, 
monitoring a rotor through a twenty-eight sensor matrix, focusing on eight parts (see the table below) 
of the mechanical component, on a time frame spanning January 1,  2007 through to April 20, 2009. 

In total we have 28 time series from 28 sensors attached to 8 different parts of the mechanical rotor. 
The signals reach us after the application of the Fast Fourier Transform (FFT), spread across 28 files, in 
the form of (Fig. 1): 

[date, time, FFT frequency, FFT amplitude] 

Spectral frequency and amplitude are generated by the FFT.  
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The eight parts of the rotor monitored through groups of sensors 

A1 input shaft vertical 

A2 second shaft horizontal upper bearing 

A3 third shaft horizontal lower bearing 

A4 internal gear 275 degrees 

A5 internal gear 190,5 degree 

A6 input shaft bearing 150 

A7 input shaft bearing 151 

M1 torque KnM 

 

It is worth noticing that the signals are not synchronous in terms of date and time, meaning that they 
have been recorded at different times during the day and at different dates.  

The whole data set shows only one breakdown episode on July 21, 2008. The breakdown is visible only 
from some sensors but particularly in some frequency bands. After the breakdown, the rotor was 
replaced, with much cleaner signals being recorded afterwards. 

Figure 1. Data table with [date, time, FFT frequency, FFT amplitude] 

 

Data Pre-processing 

Reading Data  
The “Read all Data” metanode: 

- loops over all 28 files,  

- reads the content in the format described in the previous section,  

- bins the frequencies into 100 Hz large bins, spanning the range from 0 to 1200 Hz,  

- calculates the average spectral amplitude for each frequency bin and for each day,  

- renames the resulting columns as <frequency band + current file name>,  

- appends the newly created columns for the current file name to the set of already produced 

data columns. 
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Figure 2. Content of "Read All Data" metanode looping on all files, reading the data, and calculating the average spectral 
amplitude by frequency bin and by day (see Fig. 3 below for contents of “frequency binning” metanode) 

 

Frequency Binning  
The part with the frequency binning, the calculation of the average spectral amplitude, and the 
renaming of the data columns is performed by the “frequency binning” metanode. 

First, all datetime objects are transformed into the corresponding date by means of the String to 
Date/Time node; then 100Hz large frequency bins are created using the Numeric Binner node; the 
Pivoting node bins the frequency values into the corresponding frequency bins and the datetime values 
into the corresponding date bins, and calculates the average spectral amplitude value for each date 
and each frequency bin; finally, the Column Rename (RegEx) node renames each column with the 
corresponding frequency band and the original file name.  

The output data table contains 313 time series of average spectral amplitudes for each frequency bin 
(band) and for each day. 

Figure 3. Metanode “frequency binning” inside “Read All Data” metanode calculating the average spectral amplitude by 
frequency bin and day 

 

Time Alignment 
The original files, however, do not contain measures all for the same dates. Some start earlier, some 
end earlier, and some are missing a few measures here and there. Basically, we now have a time 
alignment problem. 

As we kept the date values for each imported file, we can now run an outer join, using a Joiner node, 
to join two sets of measures on their date values. The resulting data table, though, presents a number 
of missing values in the date column as well as in the measure columns (Fig. 4).  While the missing 
values in the measure columns are meaningful (i.e. no signal recording for that day), there should be 
only one date column covering the whole time span without missing values. The Column Merger node 
merges two data columns, filling up the missing values in the primary column with the values in the 
secondary column.  



 
 

 

Copyright © 2015 by KNIME.com AG all rights reserved      page 7 

Figure 4. Two date series from two different input files after 
outer joining the corresponding data sets 

 

 

 

Figure 5. Metanode ”join” in Metanode 
“TimeAlignment” to outer join two data sets &  merge 

their date series 

 

 

We joined the data sets originating from different files two by two in outer join mode. Every time a 
pair of data sets was outer joined, the missing dates problem was fixed with a Column Merger node 
(Fig. 5). We repeated the Joiner + Column Merger node construction on all pairs of data sets. The final 
result is a data table with one date column and 313 time series of spectral amplitude values from 
different original files.  

This pre-processed data table is saved to a CSV file named AlignedData.csv by a CSV Writer node. 

Visualization 
Now that we have spectral amplitudes, averaged on frequency bins and dates, and time aligned, we 
are ready for the data analytics that predicts future possible anomalies without ever having seen one 
in the data history.  

However, before proceeding with the advanced analytics, let’s take a moment to visualize our data 
and see how they evolve over time and if there is any hint of the imminent rotor breakdown. In 
particular, we visualize the time series as: 

- a line of values over dates with the Line Plot node 

- correlation maps, i.e. the correlation of a data column with another data column, using the 

Linear Correlation node 

- auto-correlation maps, i.e. the correlation of a sample with its past inside the same data 

column, using the Linear Correlation node 

- a Scatter Matrix of three time series on three different frequency bands and on three different 

time windows 

- a Heatmap with time on the y-axis, frequency bands on the x-axis, and average spectral 

amplitudes ranging from blue (low values) to red (high values) as map cells. 

The final workflow, with pre-processing, time alignment and visualization nodes, named “Time 
Alignment & Visualization” is shown in Fig. 6 and is available on the EXAMPLES server under 
050_Applications/050017_AnomalyDetection/Pre-processing. 
050_Applications/050017_AnomalyDetection/data contains a reduced data set to run the workflow. 
The original full data set is downloadable from  
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http://www.knime.org/files/AnomalyDetectionFullDataSet.zip 

Figure 6. Workflow “Time Alignment & Visualization” pre-processing, time aligning and visualizing the time series with 
different visualization techniques. 

 

Time Series Line Plots 
A line plot of a time series can be obtained with a Line Plot node. The interactive view of the Line Plot 
node allows data column to be selected as well as the color that should be displayed. 

Not much pre-processing is necessary, besides overwriting the RowIDs with the date values. Indeed 
the Line Plot node shows the RowID values on the x-axis. Thus, if we want to see the dates on the x-
axis we need to transform them into RowIDs. 

In the two plots reported in Fig. 7 the rotor breakdown on July 21 is clearly visible in the [500-600Hz] 
band of the A1-SV3 signal and not really that much in the [0-100Hz] band of the same signal. In the 
second plot, representing the signal in the [500-600Hz] band, the context before and after the 
breakdown is easily recognizable: the “before” time window shows higher spectral amplitudes for the 
signal produced by the old rotor piece; the “after” time window shows a signal with lower spectral 
amplitudes produced by a very new rotor. 

http://www.knime.org/files/AnomalyDetectionFullDataSet.zip
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Figure 7. Line Plots of A1-SV3 Data, respectively in the [0-100Hz] and in the [500-600Hz] frequency bands 

 

Scatter Matrix 
The Scatter Matrix node generates a view of an nxn scatter matrix with n² scatter plots for n selected 
data columns.  

In a 3x3 scatter matrix, 9 permutations of pairs of 3 data sets are displayed in 9 scatter plots. The three 
selected time series to be represented in a 3x3 scatter matrix (Fig. 8) are generated by sensor A1-SV3 
on the [0-100Hz], [200-300Hz], and [500-600Hz] frequency band respectively.  

Notice that the scatter plots on the matrix diagonal represent a data set vs. itself and therefore show 
a diagonal line. 

Notice also that the scatter plot generated by data set 1 vs. data set 2 is found again as data set 2 vs. 
data set 1 at the symmetrical location in the scatter matrix. 

Here we also examined three different time windows:  

- from January to August 2007 in blue (training window);  

- from September 2007 to July 21, 2008 (breakdown date) in red (maintenance window);  

- after July 22, 2008 in green (new rotor window).  
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Figure 8. Scatter Matrix of time series from A1-SV3 sensor in [0-100Hz], [200-300Hz], and [500-600Hz] frequency band 
respectively for three time windows 

 

The interactive Scatter Matrix view allows you to choose the data columns to be displayed but not 
their color. Data point coloring is obtained with a Color Manager node. In the Color Manager node, a 
color map is created according to the values in a selected data column. If the values are nominal, a 
color is associated with each nominal value. If the values are numerical a heat map is defined over the 
data column numerical range. We associated different colors with different time windows: training 
(blue), maintenance (red), and new rotor (green) window. 

The time preceding the breakdown in red is clearly seen wandering off from the majority of the data 
points in all scatter plots. 

Correlation Maps 
In a correlation map, the correlation is calculated between all values in a data column and all values in 
another data column, as the Pearson’s Product Moment Coefficient if the two data columns are 
numeric, or as the Pearson’s Chi Square Test if the two data columns are nominal. No correlation 
coefficient is defined for numerical vs. nominal data columns. 

The configuration window of the Linear Correlation node just requires the data column set for the 
calculation of the correlation matrix. The correlation matrix is then produced at the output port and in 
the node view as a red-white-blue heatmap. Blue values show a high correlation, white values show 
correlation zero, and red values show an inverse correlation between two data columns. 

Correlation measures for numerical columns are range dependent. Normalization is required before 
correlation calculation for data columns to fall in the same numerical range. Supposedly our data files 
reached us already normalized. 

We calculated the correlation matrix over the training time window (till August 2007) and over the 
maintenance time window (from September 2007 till July 2008). The resulting correlation matrices are 

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
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different: signals seem to be more correlated across frequency bands over the maintenance window, 
right before the rotor breakdown, rather than over the training time window earlier on, when the rotor 
is still working normally (Fig. 9 and 10). Could this be something that we can leverage to predict the 
imminent breakdown?  

Figure 9. Correlation matrix across frequency bands before 
August 31, 2007 for time series originating from sensor A1-

SV3 

 

 

Figure 10. Correlation matrix across frequency bands after 
August 31, 2007 and before July 21, 2008 for time series 

originating from sensor A1-SV3 

 

Auto-Correlation Maps 
Correlation matrices can be calculated across frequency bands, as in the previous section, as well as 
over time. Using the Lag Column node we can put the current sample value and its past N values in the 
same data row. Therefore, feeding the Linear Correlation node with the current sample values and 
their past values produces an auto-correlation matrix. In an auto-correlation matrix, the correlation 
values are calculated across the samples and their past values. 

Correlation measures for numerical columns are range dependent. However, here normalization is not 
necessary since the numerical range of a column of current samples is the same as the numerical range 
of a column of past samples of the same signal. 

The resulting auto-correlation matrices in Fig. 11 and 12 show that the almost non-existing correlation 
of the time series values with their past in the [300-400Hz] frequency band increases noticeably 
moving from the training time window into the maintenance time window. Again, is this something 
we can leverage to predict the imminent rotor breakdown?  
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Figure 11. Auto-correlation matrix before August 31, 2007 for 
time series originating from sensor A1-SV3 

 

 

Figure 12. Auto-correlation matrix after August 31, 2007 and 
before July 21, 2008 for time series originating from sensor 

A1-SV3 

 

Heatmap 
The last visualization technique we applied to this dataset, in order to get a better idea of the 
breakdown and the signal evolution over time and across frequencies, is the heatmap. 

A heatmap visualizes a number of data columns, effectively producing a matrix with an invisible RowID 
sequence on the y-axis, the column names on the x-axis, and the column numerical values as cell 
values. The cell values are represented graphically with a color progression from a selected color 
representing the lowest value to a selected color representing the highest value.  

The Heatmap (JFreeChart) node, in the configuration window, selects some data columns from the 
input data table to convert into a heatmap image at the output port and to visualize in the View 
command of the node context menu. The heatmap range colors are also defined in the node 
configuration window. 

If we want to hide the column range information, we need to normalize the data columns to fall into 
the same range prior feeding them into the Heatmap (JFreeChart) node. For this project we decided 
to keep the column range as they are, to show such information in the heat map as well. 

In our case (Fig. 13), we have the time on the y-axis, the different frequency bands for the selected 
signal on the x-axis, and the spectral amplitudes as cell values. The heatmap ranges from deep blue for 
the lowest numerical values to bright red for the highest numerical values. 

Fig. 13 shows the heatmap of one of the sensor signals for the whole time available. There we can see 
the breakdown in bright red clearly over two frequency bands: [200-300Hz] and [500-600Hz]. 
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Conclusions 
In this whitepaper, we started analyzing time series data from a network of sensors monitoring a 
working rotor, which features a breakdown episode on July 21. It would be interesting to be able to 
predict the breakdown episode from no other examples than the available data history of normal 
functioning. This is what anomaly detection is all about. Before we proceed with complex data 
analytics, however, we need to clean and quantify the data suitably and visually explore their evolution 
over time and across frequency bands.  

Figure 13. Heatmap across frequency bands and time of the signal originating from the A1-SV3 sensor 

 

This whitepaper prepares the FFT processed time series coming from the rotor sensors for further 
analytics, by averaging spectral amplitudes by date and frequency bin and performing some time 
alignment. After that, it explores the time series evolution visually using five different visualization 
techniques: line plots, scatter matrix, auto-correlation maps, correlation maps, and heat maps. From 
the resulting views, you can see the breakdown episode clearly in some of the frequency bands. 

In addition, time alignment and frequency binning are not uncommon procedures in the analysis of 
sensor data. The procedures described here could easily be reused for other similar applications, for 
example Internet of Things applications. 

The final workflow, with pre-processing, time alignment and visualization nodes, named “Time 
Alignment & Visualization” is available on the EXAMPLES server under 
050_Applications/050017_AnomalyDetection/Pre-processing. 
050_Applications/050017_AnomalyDetection/data contains a reduced data set to run the workflow. 
The original full data set is downloadable from  
http://www.knime.org/files/AnomalyDetectionFullDataSet.zip   

http://www.knime.org/files/AnomalyDetectionFullDataSet.zip

