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In thisworkwe explore the corrosion inhibition of steel in acidicmedium for a diverse set of organic compounds
by developing a KNIME workflow including the newly introduced Enalos KNIME nodes. We have integrated in a
single database 186 corrosion inhibition data of steel in acidicmedium including 55organic inhibitors in different
concentrations and investigated the structural characteristics that influence the corrosion inhibition effect. We
introduce the custom made Enalos KNIME nodes that are made publicly available by Novamechanics Ltd, as
key – nodes to develop robust and validated quantitative structure–property models (QSPRs). Tasks such as
assessing the structural characteristics of compounds, validating themodel and defining the domain of its appli-
cability are easily addressed using the Enalos family nodes. We have concluded in an accurate kNN model that
can reliably predict the corrosion inhibition of a given compound.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Among the corrosion control techniques, the development of new
corrosion inhibitors have substantially increased in the recent years be-
cause it is believed to be one of the most effective and economic
methods to protect metal corrosion in acidic media [1,2]. The design
of novel effective corrosion inhibitors is very important in various in-
dustrial processes [3]. Various types of organic inhibitors that contain
heteroatoms such as oxygen, nitrogen and sulphur and multiple
bonds have been reported in literature for several corrosion systems,
metals and alloys. The inhibiting effect is generally explained by the for-
mation of physical and/or chemical absorption film on themetal surface
[4–7]. The planarity of heterocycles and the presence of lone pair of
electrons on the heteroatoms are important requirements that deter-
mine the absorption of these molecules on the metallic surface.

Most attempts in designing novel corrosion inhibitors follow a trial
and error approach which is time-consuming and costly. These at-
tempts have limited potential in identifying novel molecules with
desired characteristics. On the other hand, in silico techniques have con-
tinuously gained an important role in the modeling and prediction of
properties [8–14]. The design of novel corrosion inhibitors is a new
challenge for computational chemistry which models material proper-
ties as functions of the molecular structures using the so-called Quanti-
tative Structure Property Relationships (QSPR). Quite recently a series
of QSPR studies on corrosion inhibitors were presented in the literature
[4–7].
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In this work we present a KNIME workflow [15] for modeling and
predicting corrosion inhibition for steel in acidic medium. Within this
workflow we have used the Enalos KNIME nodes [16] that were devel-
oped to facilitate QSPR development. For the development of the pro-
posed kNN model we calculated Mold2 molecular descriptors [17] for
the organic inhibitors using Enalos Mold2 KNIME node. The proposed
predictive model was fully validated using various validation techniques
provided by Enalos Model Acceptability Criteria KNIME node. Moreover
we calculated the domain of applicability of the model to identify the
area of reliable predictions with Enalos Domain KNIME nodes. The re-
sults were interpreted so that design of novel effective corrosive inhibi-
tors could be stimulated. The modeling procedure presented has the
potential to considerably decrease the time and efforts required todesign
or improve corrosion inhibitors.

2. Material and methods

2.1. Enalos KNIME nodes

KNIME (Konstanz Information Miner) [15] is a user friendly and
comprehensive open-source data integration, processing, analysis, and
exploration platform that enables the user to visually create data
flows (often referred to as pipelines), selectively execute some or all
analysis steps, and later investigate the results through interactive
views on data and models. KNIME is a very powerful tool for data anal-
ysis which also integrates all analysis modules of the well knownWeka
data mining [18]. A great variety of machine learning methods have
been applied in Quantitative Structure – Property Studies (QSPR) stud-
ies and the best approach for a specific problemneeds to be explored. In
this work we have used KNIME platform in order to simultaneously run
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and compare different modeling methodologies and explore which of
the available methods (or combination) best suites our data.

Enalos KNIME Nodes are designed and developed by Novamechanics
Ltd with the aim to facilitate model development targeting lead identifi-
cation and design for all KNIME users. The Nodes are freely available via
the KNIME Community and the company's website (http://www.
novamechanics.com/knime.php). The Enalos family nodes (Fig. 1)
contain:

(i) Enalos Mold2 node for the calculation of Mold2 molecular
descriptors (ii) Enalos Model Acceptability Criteria node that can be
used to validate the Quality of Fit and Predictive Ability of a continuous
QSAR Model, (iii) Enalos Domain – Similarity node that can be used to
define Applicability Domain (APD) based on the Euclidean distances,
(iv) Enalos Domain – Leverages node that can be used to define Appli-
cability Domain based on the Leverages.

2.2. Data set

Data for the corrosion inhibition of steel in acidicmedium from differ-
ent organic compoundswere collected from the literature [4–7] and com-
piled in a single database. Corrosion inhibitors include triazole, oxadiazole
and thiadiazole derivatives, aromatic hydrazides and Schiff bases, benz-
imidazole and 2- substituted derivatives and pyridine derivatives. In
total 186 inhibition data were integrated for the total of 55 organic com-
pounds in different concentrations as shown in Table S1 of the Supporting
Information. Experimental inhibition efficiency is obtained using weight
loss of compounds.

2.3. Descriptor calculation

Mold2 software was used to assess the structural characteristics of
corrosion inhibitors used in this study. Mold2 calculates a large and di-
verse set of molecular descriptors encoding two-dimensional chemical
structure information [17]. Comparative analysis of Mold2 descriptors
with those calculated from commercial software on several published
datasets demonstrated that Mold2 descriptors convey sufficient struc-
tural information and in addition, better models were generated using
Mold2 descriptors than the compared commercial software packages.
For each compound 777 descriptors were calculated using Mold2 soft-
ware which account for the topological, geometric and structural char-
acteristics of compounds. As some of the descriptors do not have any
discrimination power (i.e. they have no variation) a filter was applied
for their removal [19]. In total 320 descriptors remained to be used as
possible inputs during the QSPR model development.

NovaMechanics Ltd through Enalos KNIME nodes madeMold2 avail-
able as an extension for KNIME platform. Enalos Mold2 KNIME node can
be combinedwith custommadeworkflows and real time descriptor cal-
culations combined with state of the art modeling techniques.

2.4. Variable selection

Before running the modeling methodology the most significant attri-
butes among the 320 available were preselected by using Correlation –

based feature subset selection (CfsSubset) variable selection and BestFirst
Fig. 1. Enalos family
evaluator [20] which are included inWeka [18]. CfsSubset algorithm eval-
uated the worth of a subset of attributes by considering the individual
predictive ability of each feature along with the degree of redundancy be-
tween them. Subsets of features that were highly correlatedwith the class
while having low inter-correlation were preferred.

2.5. Model development

A great variety of machine learning methods have been applied in
QSAR studies [8–14] and the best approach for a specific problem
needs to be explored. In this work we have used KNIME platform in
order to simultaneously run and compare different modeling meth-
odologies and explore which of the available methods (or combina-
tion) best suites our data. k-Nearest neighbors (kNN) methodology
outperformed all methodologies tested among which Support Vector
Machines (with Sequential Minimal Optimization), Linear Regression
and Gaussian Processes for regression [18].

kNN algorithm [21] is amethod for classifying objects based on clos-
est training examples in the feature space and belongs to instance-
based (or lazy) learning. Based on the kNN algorithm an object is classi-
fiedby amajority vote of its neighbors,with the object being assigned to
the class most common amongst its k nearest neighbors (where k is a
positive integer, typically small). If k=1, then the object is simply
assigned to the class of its nearest neighbor. In this work we have
used the optimal k value. Euclidean distance was used with all descrip-
tors and contributions of neighbors are weighted by the inverse of
distance.

2.6. Model validation

The internal performance, as represented by goodness-of-fit and
robustness, and the predictivity of a model, as determined by external
validation, needs to be evaluated. The produced model was validated
using external validation and cross validation methods [21]. The
model was internally and externally validated paying special atten-
tion to the principles of model validation for accepting QSAR models
as described by the Organisation for Economic Cooperation and De-
velopment (OECD) [22].

External validation was applied, by randomly splitting the dataset
into training and validation set in a proportion of 70:30. The separa-
tion of the data set was performed using the Partitioning KNIME
node by applying the default random seed. The use of random seed
provides reproducible results upon re-execution of the node. The 55
compounds that constituted the test set were not involved by any
means in the training procedure. The following statistical criteria
were used to assess the robustness, reliability and predictive activity
of the model: the coefficient of determination between experimental
values and model predictions (R2), validation through an external
test set, leave-one-out cross validation procedure and Quality of Fit
and Predictive Ability of a continuous QSAR Model according to
Tropsha's tests [23–25]. Enalos Model Acceptability Criteria node
was used for this purpose.

The first indication on the success of a QSPR model is to measure
the quality of fit on the available training data. The most common
of KNIME nodes.

http://www.novamechanics.com/knime.php
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objective criteria used for this purpose are the squared correlation co-
efficient R2 and the root mean squared error (RMSE) statistic which
are defined next:

R2 ¼ 1−

Xn
i¼1

yi−ŷið Þ
2

Xn
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yi−ytrð Þ
2 ð1Þ
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According to Tropsha et al. [23] the predictive ability of a QSAR
model should be tested on an external set of data that has not been
taken into account during the process of developing the model. In
particular, the following statistical indices have been proposed [23]
to assess the predictive power of QSAR models, besides the popular
squared correlation coefficient R2

pred.:
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In the above equation ntest is the number of compounds that consti-
tute the validation data set, ytr is the averaged value for the dependent
variable for the training set, yi, ỹ; i ¼ 1;…;ntest are themeasured values
and theQSARmodel predictions of the dependent variable over the avail-
able validation set and ˜y is the average over all ỹ; i ¼ 1;…;ntest.

Tropsha et al. [23] considered a QSAR model predictive, if the fol-
lowing conditions are satisfied:

R2
ext > 0:5 ð6Þ

R2
pred > 0:6 ð7Þ

R2
pred−R2

o

� �

R2
pred

b0:1 ð8Þ

0:85≤ k≤ 1:15 ð9Þ

2.7. Domain of applicability

The need to define an applicability domain expresses the fact that
QSPRs are models which are inevitably associated with limitations in
terms of the types of chemical structures, physicochemical properties
and mechanisms of action for which the models can generate reliable
predictions. Domain of Applicability [26–29] was defined using both
the leverages and similarity measurements. Enalos Domain – Similarity
and Enalos Domain – Leverages node were both used to assess domain
of applicability of the proposed model.

Firstly similarity measurements were used to define the domain of
applicability of the models based on the Euclidean distances among
all training compounds and the test compounds [26,27]. The distance
of a test compound to its nearest neighbor in the training set was
compared to the predefined applicability domain (APD) threshold.
The prediction was considered unreliable when the distance was
higher than APD. APD was calculated as follows:

APD ¼ b d > þZσ ð10Þ

Calculation ofbd>andσwas perfomed as follows: First, the average
of Euclidean distances between all pairs of training compoundswas cal-
culated. Next, the set of distances thatwere lower than the average was
formulated. bd>and σwere finally calculated as the average and stan-
dard deviation of all distances included in this set. Z was an empirical
cutoff value and for this work, it was chosen equal to 0.5 [26].

The second approach to define applicability of the domain was the
Extent of Extrapolation [27,30] It is based on the calculation of the le-
verage hi [31] for each chemical, where the QSAR model is used to
predict its activity:

hi ¼ xTi XTX
� �

xi ð11Þ

In Eq. (11) xi is the descriptor-row vector of the query compound
and X is the k×n matrix containing the k descriptor values for each
one of the n training compounds. A leverage value greater than 3 k/n
is considered large. It means that the predicted response is the result
of a substantial extrapolation of the model and may not reliable.

In order for a QSARmodel to be used for screening new compounds,
its domain of application [31,32] must be defined and predictions for
only those compounds that fall into this domain may be considered
reliable.

2.8. Y-randomization

Y-randomization test also ensures the robustness and the statistical
significance of a QSAR/ QSPR model. The dependent variable vector
(Eexp%) is randomly shuffled and a new model is developed using the
original independent variable matrix. The derived models after several
repetitions are expected to have less significant correlation coefficient
values than the ones of the original model. This method is usually
performed to eliminate the possibility of chance correlation. If the oppo-
site happens then an acceptable QSAR/ QSPRmodel cannot be obtained
for the specific modeling method and data [23,30].

3. Results and discussion

For preprocessing, cleansing, attribute selection, modeling and vali-
dation of our data we have created a KNIME workflow suitable to run
step by step all the aforementioned tasks simultaneously for each of
the described methodologies. Enalos KNIME nodes were used to per-
form each of the corresponding steps. We have created a KNIME
workflow that implements the development of a predictive kNN
model following the sequence described as following: Compounds
and corrosion inhibition were imported and preprocessed, descriptors
were calculated and selected, the kNN algorithm was implemented,
the produced model was validated and the domain of applicability
was defined.

The original dataset of 186 corrosion inhibitors was randomly
partitioned into training and validation set in a ratio of 70:30 consisting
of 131 and 55 compounds respectively. The training set was used to de-
velop the QSPRmodels as described belowwhereas the test set was not
involved by any means in the model development. For each compound



Table 1
Statistical parameters of the QSPR model.

R2training (n=55) 0.96

RMSEtraining 4.90
R2

LOO 0.73
R2pred (n=131) 0.84
RMSEpred 9.83
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777 descriptors were calculated using Mold2 software which account
for the topological, geometric and structural characteristics of com-
pounds. As some of the descriptors do not have any discrimination
power (i.e. they have no variation) afilterwas applied for their removal.
In total 320 descriptors remained to be used as possible inputs during
the QSPR model development.

The CfsSubset variable selectionwith BestFirst evaluatormethodwas
then applied on the training data to select the most significant, among
the 320 available descriptors. Seven descriptors and the concentration
were selected as the most important for the development of the model.
The selected descriptors are number of Oxygen (D026), structural infor-
mation content order-1 index (D282), Geary topological structure auto-
correlation length-8 weighted by atomic Sanderson electronegativities
(D470), Moran topological structure autocorrelation length-7 weighted
by atomic polarizabilities (D509), Lowest eigenvalue fromBurdenmatrix
weighted by van der Walls order-6 (D545), Hightest eignevalue from
Burden matrix weighted by van der Walls order-4 (D575), number of
group Ar-CH=X (D741) and the concentration (C in mM).

The chemicalmeaning of themolecular descriptors used in the devel-
opment of each model is briefly discussed below [33,34]. The combina-
tion of these descriptors has several advantages such as unique
representation of the compound and high discriminating power. De-
scriptors D026 and D741 are indicators that account for the presence
or absence of a specific atom or structural group. More specifically
D026 is the number of oxygens that are included in the compound. De-
scriptor D741 is the number of the Ar-CH=X group which might be
present in the compound. Descriptor D282 encodes the structural infor-
mation content order-1 index. This descriptor belongs to the family of to-
pological information indices of a graph based on neighbor degrees and
edge multiplicity. Topological information indices are graph theoretical
invariants that view the molecular graph as a source of different proba-
bility distributions to which the information theory is applied [33]. De-
scriptor D470 encodes information as described by Geary topological
structure autocorrelation length-8 weighted by atomic Sanderson elec-
tronegativities. Geary index is a general index of spatial autocorrelation
and is a distance-type function varying from zero to infinite. This index
is weighted by atomic Sanderson electronegativities. Atom electronega-
tivity is among the most important atomic properties and is defined as
the power of an atom in amolecule to attract electrons to itself. The clas-
sical definition of atomic electronegativity is due to Mulliken and is de-
fined as the arithmetic mean of the ionization potential and the
electronic affinity of the atom. Sanderson electronegativity is based on
covalent radius [33]. Descriptor D509 encodes information related to
atomic polarizabilities combined withMoran topological structure auto-
correlation length-7. Moran coefficient is a general index of spatial auto-
correlation and is related to atomic properties, the number of atoms and
the topological distance between specific atoms. Moran coefficient
Fig. 2. Influence of k value (kNN) to RMSE of the Test Set.
usually takes values in the interval of [−1,+1]. The atomic polarizability
is the charge dependent effective atomic polarizability calculated by an
empirical method as a linear function of the net atomic charge [33]. De-
scriptors D545 and D575 are the lowest eigenvalue from Burden matrix
weighted by van der Walls order-6 and the hightest eignevalue from
Burden matrix weighted by van der Walls order-4. Both descriptors be-
long to the Burden eigenvalue descriptors introduced by Burden [35].
They are derived from the highest and the lowest eigenvalues of the
modified adjacencymatrix for themolecules [36]. Burden eigenvalue de-
scriptors weighted by different properties (e.g. van derWalls) have been
shown to be very discriminating descriptors. The highest and the lowest
eigenvalues obtained from the matrices, have been demonstrated to re-
flect relevant aspects of molecular structure, and are therefore useful for
similarity searching [33].

The aforementioneddescriptors have differentweights that influence
the increase or decrease of corrosion inhibition among different com-
pounds. Based on the previous discussion and the positive or negative in-
fluence of each descriptor, new derivatives with desired properties can
be designed. We have used a KNIME workflow in order to compare dif-
ferent methodologies and explore which of the available methods best
suites our data. As described above kNN methodology was selected. By
applying on our training data, kNN methodology with an optimized
value of k equal to 3 was selected. The influence of k value to RMSE is
shown in Fig. 2. Euclidean distance was used with all eight descriptors
and contributions of neighbors weighted by the inverse of distance.

Validation of the model was performed using the techniques men-
tioned in the previous section. The statistics are presented in Table 1,
illustrating the accuracy, significance and robustness of the produced
model. For comparison reasons in Table 2 we also present the results
for three more methodologies tested, namely Support Vector Ma-
chines (with Sequential Minimal Optimization), Linear Regression
and Gaussian Processes for regression. As can be seen from Tables 1
and 2, kNN methodology results in a robust and accurate model that
could be reliably used to predict corrosion inhibition efficiency. We
can conclude that the selected descriptors selected by CfsSubset and
BestFirst algorithm can encode the structural features of the com-
pounds related to corrosion inhibition.

Fig. 3 presents a plot of experimental versus predicted values of cor-
rosion inhibition (Eexp% vs Epred%) for compounds in the training and
test set. The possibility of having included outliers in our datasetwas in-
vestigated by calculating the standard residuals. Standardized residuals
greater than 2 or less than −2 are considered large and are possible
outliers. We have indicated outliers with red color (Supporting Infor-
mation Table S1).
Table 2
Comparison of the different modeling methodologies.

Methodology RMSEpred R2pred

kNN 9.83 0.84
SVM(SMO) 13.07 0.70
Linear Regression 16.12 0.63
Gaussian Processes 15.50 0.58

image of Fig.�2


Fig. 3. Experimental vs Predicted values for the Training and Test Set.

Fig. 5. Distribution of the RMSE values (100 Random Splits).
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The EnalosModel Acceptability Criteria KNIME node has been applied
to the data (Fig. 4). The model passed Tropsha's [23,31] recommended
tests for predictive ability (Eqs. (6)–(9)):

R2
pred ¼ 0:84 > 0:5

R2
ext ¼ 0:83 > 0:6
R2
pred−R2

o

� �

R2
pred

¼ �0:001b 0:1

k ¼ 1:02≈ 1

In Fig. 4 R2 is the coefficient of determination between experimental
values and model prediction on the test set (R2

pred). Mathematical cal-
culations of R2

o, R’2o , k, and k'are based on regression of the observed
activities against the predicted activities and vice versa using the equa-
tions described in the materials methods section (Eqs. (1), (3)–(5)).

The model was also quite stable to the inclusion–exclusion of
compounds measured by the LOO (leave one out) cross validation
procedure. This is indicated by the following statistic: R2

LOO=0.73.
The proposed method passed also Y-randomization test which is a

method also for testing the robustness and the statistical significance
of a QSAR / QSPR model. This method was performed to eliminate the
possibility of chance correlation. In particular, 10 random shuffles of
the Y vector (Eexp%) correlation coefficient values in the ranges of 0.04
to 0.355. The low values of the correlation coefficient indicate that the
results from the proposed model were not due to chance correlation.

An additional validation test has been carried out in order to fur-
ther assess the predictive potential of the applied approach indepen-
dently of the data set partitioning. The available data were randomly
divided 100 times in a ratio of 70:30 for training and test set, respec-
tively. All the random splits results passed Tropsha's recommended
tests for modeling validation [23]. The distribution of the RMSE values
Fig. 4. Enalos Model Acceptability Criteria KNIME node screenshot.
is presented in Fig. 5. The detailed results are presented in Table S2 of
the Supporting Information.

The applicability domain was defined for all compounds that con-
stituted the training set as described in the Materials and Methods
section. The applicability domain limit value was equal to 3.774 and
0.183 for similarity [37] and leverage measurements [38] respective-
ly. In the case of similarity measurements all compounds in the test
set had values in the range of 0.015-1.23. In the case of leverages
the predicted response of one compound (with leverage 0.378) is
the result of a substantial extrapolation of the model and the predic-
tion may not be reliable (Table S1). This compound is a simple pyri-
dine and lies outside the domain of applicability due to the fact that
the majority of the compounds in the training set are much more
complex. Since all validation compounds fell inside the domain of ap-
plicability, with only one exception for the domain calculated for le-
verages, all the other model predictions for the external test set can
be considered reliable (Table S1).

The proposed method, due to the high predictive ability and the
fact that it requires information related only to the 2D structure of a
compound, could be a useful aid to the costly and time consuming ex-
periments for determining the corrosion inhibition. The method can
also be used to screen existing databases or virtual chemical struc-
tures to identify organic compounds with desired properties. In this
case, the applicability domain will serve as a valuable tool to filter
out “dissimilar” chemical structures.

4. Conclusions

In this paper we present a KNIME workflow that successfully builds
an accurate model for the prediction of corrosion inhibition of steel in
acidic medium based on a large dataset of 186 organic compounds in
different concentrations. Enalos KNIME nodes were included in the
workflow to facilitate descriptor calculation, model validation and do-
main of applicability determination. Themolecular descriptors used en-
code information about the structure, branching, electronic effects,
chains and rings of the modules and thus implicitly account for cooper-
ative effects between functional groups. The proposed kNN model was
fully validated and was proven accurate and reliable model for the pre-
diction of corrosion inhibition for steel in acidic medium. Applicability
domain was defined to identify the reliable predictions. The developed
model can accurately predict corrosion inhibition and help the design of
novel molecules with desired characteristics.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.chemolab.2013.02.003.
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