

Welcome to Text Mining with Deep Learning

Going live at:

Chicago 11:00 am

San Francisco 9:00 am

New York 12:00 pm

Berlin 6:00 pm

Housekeeping

- Post in the chat where you are dialing in from and discuss with other attendees
- Questions? Post them in the Q&A

Questions will be answered after the presentation.

Agenda

- Introduction to Sentiment Analysis
 - Review of sentiment analysis techniques
 - Sentiment analysis in-depth: step-by-step
 - Transformation for deep learning
- Introduction to Deep Learning
 - Neural network vs. deep neural network
 - How to build a simple deep neural network
 - Training and classification

Text Processing Extension

Other Data Types	✓ → Transformation	✓ Preprocessing
✓ → Text Processing	駩 Bag Of Words Creator	Case Converter
v 🔁 IO	Document Data Assigner	B Diacritic Remover
👪 Brat Document Writer	Document Data Extractor	国 Dictionary Filter
Dml Document Parser	Document Vector	B Dictionary Replacer
➡ Document Grabber	Document Vector Applier	Dictionary Replacer (File-based)
Flat File Document Parser	B Document Vector Hashing	B Hyphenator
OpenNLP NER Model Reader	B ⁺ Meta Info Extractor	融 Kuhlen Stemmer
➡■ PDF Parser	B→ Meta Info Inserter	A Modifiable Term Filter
PubMed Document Parser	B Sentence Extractor	聞 N Chars Filter
RSS Feed Reader	ST String To Term	副記 Number Filter
Sdml Document Parser	E Strings To Document	B Porter Stemmer
Tika Parser	LS Tags To String	B Punctuation Erasure
➡ Word Parser	駩 Term Neighborhood Extractor	B武 RegEx Filter
✓ → Enrichment	S Term To String	BR Replacer
Abner Tagger	LS Term To Structure	副 Snowball Stemmer
Dictionary Tagger	By Unions Town Futureton	B Stanford Lemmatizer
Dictionary Tagger (Multi Column)	Ge Unique Term Extractor	导致 Stop Word Filter
DenNLP NE Tagger	✓ → Frequencies	時入 Tag Filter
Star Tagger	B→ DF	国家 Tag Stripper
POS Tagger	B ⁺ Frequency Filter	
Stanford Tagger	国本 ICF	
StanfordNLP NE Learner	日本 IDF	
StanfordNLP NE Scorer	間* NGram Creator	
StanfordNLP NE Tagger		
Wildcard Tagger	B가 Term Co-Occurrence Counter B가 Term Document Entropy	

V 🗁 Mining

🗸 🥃 Misc

醫 Chi-Square Keyword Extractor 醫 Keygraph Keyword Extractor

StanfordNLP Relation Extractor

融 Topic Extractor (Parallel LDA)

離 Category To Class Document Viewer 離 Markup Tag Filter 離 String Matcher

Tika Language Detector

融 Simple Preprocessing

Extended NER Preprocessing

Tag Cloud

Frequencies

V Meta Nodes

StanfordNLP Open Information Extractor

Sentiment Analysis – An Example

Samsung Samsung Galaxy S7 Edge G935A 32GB Unlocked - Gold Platinum ★★★☆☆ × 125 customer reviews | 606 answered questions

★★★★ Beautiful phone from a wonderful seller!
 By ay on May 29, 2017
 Color: Gold Verified Purchase

This practically new beautiful phone well exceeded my expectations!

ጵ 값 값 값 값 One Star By on August 3, 2016 Color: Black Onyx **Verified Purchase** Very bad experience

Task: Determine the expressed opinion in a document/text, e.g. positive, negative

Sentiment Analysis = Opinion Mining = Emotion Al

Philosophy

Part 1: Reading and Parsing Data

Read/Parse textual data

sentiment	S text
0	Although the production and Jerry Jameson's directio
0	Capt. Gallagher (Lemmon) and flight attendant Eve C
0	Towards the end of the movie, I felt it was too techni
0	This is the kind of movie that my enemies content I w
0	I saw 'Descent' last night at the Stockholm Film Festi
0	Some films that you pick up for a pound turn out to k
0	This is one of the dumbest films, I've ever seen. It rip
1	Bromwell High is a cartoon comedy. It ran at the sam
1	Homelessness (or Houselessness as George Carlin s
1	Brilliant over-acting by Lesley Ann Warren. Best dram
1	This is easily the most underrated film inn the Brooks
1	This is not the typical Mel Brooks film. It was much le:
1	This isn't the comedic Robin Williams, nor is it the qu
1	Yes its an art to successfully make a slow paced th
1	In this critically acclaimed psychological thriller based
1	THE NIGHT LISTENER (2006) **1/2 Robin Williams, Tor
1	You know, Robin Williams, God bless him, is constant
1	When I first read Armistead Maupins story I was take
1	I liked the film. Some of the action scenes were very

Example:

- This movie is horrible. The acting is a waste basket.. Though the scenery is great.
- Even though this movie came out a year before I was born, it's my favorite movie.
- This is definitely one of my favorite comedies.

- movie horrible acting waste basket scenery
- movie born favorite movie
- definitely favorite comedies

9

Part 3: Transformation

Transform documents to numbers

Row ID	D movi	D absolut	D act	D worst	D amaz	Daw	D direct
Row0	1	1	1	1	1	1	1
Rowl	1	1	0	0	0	1	0
Row2	0	0	0	0	0	0	0
Row3	1	1	0	1	0	0	0
Row4	1	0	0	0	0	0	0
Row5	0	0	0	0	0	0	0
Row6	1	0	0	0	1	0	0
Row7	1	0	0	0	0	0	0
Row8	1	0	0	0	0	0	0
Row9	1	0	0	0	0	0	0
Row10	1	1	0	1	0	0	0
Rowll	1	0	0	0	0	0	0
Row12	1	1	0	1	0	0	0
Row13	1	0	0	0	0	0	0
Row14	0	0	0	0	0	0	0

Transformation for Deep Learning

Expected input of a network:

Numerical representation of each document encoding the words and their order

This film is mediocre at best. Angie Harmon is as funny as a bag of hammers. Her bitchy demeanor from Law and Order carries over in a failed attempt at comedy. Charlie Sheen is the only one to come out unscathed in this horrible anti-comedy. The only positive thing to come out of this mess is Charlie and Denise's marriage. Hopefully that effort produces better results.

52 29 8 1488 35 130 1 11794 18869 8 20 187 20 3 2984 6 20001 1 883 8167 8409 39 3791 4 8384 2716 148 9 3 1154 585 35 258 1 1987 5781 8 2 65 30 7 221 44 13964 9 10 552 20001 1 18 65 1124 159 7 221 44 6 10 931 8 1987 4 10239 14 1570 1 5136 12 741 7256 131 1829 1

- Equivalent input shape of each document
 - Truncate too long documents
 - Zero pad too short documents

Transformation Example

- movie horrible acting waste basket scenery
- movie born favorite movie
- definitely favorite comedies

Truncate

Transformation for Deep Learning (Demo)

Row ID	I sentiment	[] AggregatedValues		
Row0#0	0	[6,4539,21,]		
Row0#1	0	[3521,28,2300,]		
Row0#2	0	[2,162,1727,]		
Row0#3	0	[475,159,273,]		
Row0#4	0	[17,479,390,]		
Row0#5	0	[91,379,82,]		
Row0#6	0	[151,672,1714,]		
Row0#7	0	[991,7268,243,]		
Row0#8	0	[2,971,7475,]		
Row0#9	0	[2,11,6,]		
Row0#10	0	[2,1054,2791,]		
Row0#11	0	[15,3554,20,]		
Row0#12	0	[15,85,1078,]		
Row0#13	0	[2,603,5486,]		
Row0#14	0	[1,49,92,]		
Row0#15	0	[17368,15,55,]		
Row0#16	0	[1,4546,1747,]		

Dataset

- Subset of the IMDb (Internet Movie Database) <u>Large Movie Review Dataset</u> <u>v1.0</u> with 50000 documents*
 - 25000 documents from the positive group
 - 25000 documents from the negative group
- Goal: Assign the correct sentiment label to each document

(*) For details about the data set see <u>http://ai.stanford.edu/~amaas/data/sentiment/</u> Data citation: Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011)

Part 4: Classification

Neural networks

Deep Learning

Artificial neural network

Deep Learning

Part 4: Classification

Our Network Topology

Input Layer

- Input layer passes input data to the first hidden layer
- The dimension is the document size, i.e. the number of words in each document

Transformation Example

- movie horrible acting waste basket scenery
- movie born favorite movie
- definitely favorite comedies

Truncate

Input Layer

- Input layer passes input data to the first hidden layer
- The dimension is the document size, i.e. the number of words in each document

Embedding Layer

Embedding Layer

Male-Female

Verb tense

Country-Capital

Source: https://towardsdatascience.com/deep-learning-4-embedding-layers-f9a02d55ac12

Embedding Layer

RNN (Recurrent Neural Network)

- RNN is a deep learning model
- It has the ability to memorize previous inputs
- Suitable for analysing sequential data, e.g text, time series
- However, unreliable in handling long-term memory

LSTM (Long Short Term Memory) Layer

- LSTM is a variant of RNN
- Handles long-term memory
- Uses gates to control memorizing process
- Example:

Dense Layer

- Dense layer connects each unit of the input with each output unit of this layer
- Defines the activation function for the final output
- Example:

KNIME Deep Learning

Keras Integration

TensorFlow Integration

TensorFlow 2 Integration

- ▼ ③ Deep Learning
 - 🕶 🔣 Keras
 - ▼ B Layers
 - Advanced Activations
 - ▶ 🤁 Convolution
 - Core
 - ▶ 글 Embedding
 - ▶ 글 Locally Connected
 - ▶ 🗁 Merge
 - ► Noise
 - Normalization
 - ▶ 🗁 Pooling
 - 🕨 🗁 Recurrent
 - 🕸 Keras Collect Layer
 - Skeras Freeze Layers
 - Skeras Network Executor
 - Keras Network Learner

 - Skeras Network Reader
 - 🕸 Keras Network Writer
 - Seras Set Output Layers

Part 4: Classification

Training the Network

Advanced Options -3 ÷ 32 🗧 -New seed -0.001 0.9 0.999 1.0E-8 Learning rate decay 0.0 Clip norm Clip value ? Apply OK Cancel

Dialog - 0:189 - Keras Network Learner (train for 3 epochs)

Training the Network: Learning Monitor

Setting up the Keras Integration

- Install the KNIME Keras Integration extension
 - Go to File > Install KNIME Extensions...
 - Enter keras into the search box
 - The extension is listed under KNIME Labs Extensions
- Setup Python for KNIME Deep Learning using Anaconda
 - Python environment with Keras and TensorFlow
- Please follow the installation details in the KNIME Keras Integration Installation guide:

https://docs.knime.com/latest/deep_learning_installation_guide/index.html

Word Embedding: https://www.knime.com/blog/word-embedding-word2vec-explained

RNN/LSTM: https://www.knime.com/blog/text-generation-with-lstm

Text Encoding:

https://www.knime.com/blog/text-encoding-a-review

KNIME Deep Learning - Keras Integration <u>https://www.knime.com/deeplearning/keras</u>

KNIME Books

- Course books downloadable from KNIME Press <u>https://www.knime.com/knimepress</u>
- Get a free version with code:
 FALL-SUMMIT-WORKSHOP (valid until Jan 31, 2021)

Thank you for joining!

