

NER Modeling and Co-occurrence networks

Julian Bunzel julian.bunzel@knime.com

Agenda

- Use Case
- Document Collection
- NER Modeling
- Extracting Named-Entities
- Network Creation / Interactive views
- Subgraph Extraction

Process:

- Train a NER model to recognize drug names in literature
- Create an entity co-occurrence network
- Predict purpose of drugs based on node neighborhood
- Extract, visualize and validate interesting subgraphs
- Requirements:
 - Document collection to train a NER model and to extract named-entities from

Collection of Documents

- To train a model annotated documents are required
- Manual annotation is very time-consuming
- Automatic annotation is fast, but not always correct due to ambiguity etc.

In this workshop we will collect documents from **PubMed** and annotate them automatically.

Create a Dictionary of Entities

- As dictionary we used drugs covered by the WHO's Anatomical-Therapeutic-Chemical (ATC) Classification System
- ~800 drugs and drug combinations

Row ID	S Drug Name	S ATC Code		
Row0	4-aminosalicylic acid	J04AA01		
Rowl	abacavir	J05AF06, J05AR02, J05AR13		
Row2	abatacept	L04AA24		
Row3	abciximab	B01AC16		
Row4	abemaciclib	L01XE50		
Row5	abiraterone	L02BX03		
Row6	aciclovir	A16AX08		
Row7	adalimumab	L04AB04		
Row8	adefovir dipivoxil	J05AF08		
Row9	afamelanotide	D02BB02		
Row10	afatinib	L01XE13		
Rowll	aflibercept	L01XX44, R03BB05, S01LA05		
Row12	agalsidase alfa	A16AB03		
Row13	agalsidase beta	A16AB04		
Row14	agomelatine	N06AX22		

N02BA01

N02BA01

Anatomical maingroup: N = Drugs for nervous system

N02BA01

Therapeutic maingroup: NO2 = Analgenics/Painkiller

N02BA01

Therapeutic/pharmacological subgroup: NO2B = Other analgesics and antipyretics

N02BA01

Therap./pharmakol./chemical subgroup: N02BA = Salicylic acid and derivatives

N02BA01

Substance name: N02BA01 = Acetylsalicylic acid

Collecting Documents

- Collecting a set of documents containing dictionary entities from PubMed.
- PubMed is an openly-available search engine for biomedical literature with more than 29 million entries
- For each dictionary entry PubMed was queried using the Document Grabber node (max. 100 results per query)
- Collected altogether approx. 72.000 documents

Preparing Documents for Training

- Removing drug names with <20 hits on PubMed</p>
- Removing documents that do not contain the exact query term (only related words)
- → Ensuring enough sample sentences for each drug name
- → Reduced set of documents to approx. 45.000 *unique* documents

Train NER Model – StanfordNLP NE Learner

- Training by using the StanfordNLP NE Learner node
 - Top port: The (training) documents
 - Bottom port: Dictionary of drug names
- Internally annotates the documents based on the dictionary
- Linear-chain conditional random field (CRF) model
- Split of document collection into training and test set (10% / 90%)

StanfordNLP NE Learner - Dialog

- Use Word: Whole entity is used as feature
- Use NGrams: Substrings of a word are used as feature
- No Mid NGrams: Only use substrings that include the beginning or ending of a word
- Max NGram Length: Maximum length of a substring

		2 L'			
Learner Properties Flow Variables Memory Policy					
- Order of the CBE					
order of the CKF					
	Max Left 2				
Training features					
V Use Clas	s Feature	V Use Word			
🗹 Use NGrams	✓ No Mid NGrams	Max NGram Length 10			
✓ Use Prev	✓ Use Next	✓ Use Disjunctive			
🖌 Use Seque	ences 🕑	Use Prev Sequences			
- Word shape features	5				
v ose type seqs	Se Type Seqsz	v ose type t seqs			
	Word Shape dan2bio	•			
ОК	Apply	Cancel			
	Ļ				
	()				
ACL					

Evaluating the model – StanfordNLP NE Scorer

- Evaluating the model with StanfordNLP NE Scorer node
 - Top Port: the (test) documents
 - Bottom Port: the model
- Annotation of documents in two different ways
 - Regular expressions based on dictionary
 - Trained NER model
- Calculating statistics such as precision and recall

Row ID	D Precision	D Recall	D F1	TP TP	I FP	I FN	S Entities	S Regex anno.	S Model anno.
Row0	0.092	0.00	0.097	170669	2110	1772	INSULIN	DRUG	DRUG
Nowo	0.905	0.99	0.907	179000	5110	1//5	INCLUM ACDADT	DRUG	0
							INSULIN ASPART	DRUG	0

INSULIN ISOPHANE O

Possible drawbacks

- Model is trained to detect entirely new entities
- Bias in False Positives and False Negatives

DRUG

Annotation and Extraction of Named-Entities

- Annotating documents with StanfordNLP NE Tagger
- Annotations in total: 184.551
- Unique entities: 1.531
 - Entities from dictionary: 731
 - Entirely new entities: 800

T	Term
fen	fluramine[DRUG(PHARMA)]
de)	(fenfluramine[DRUG(PHARMA)]
ber	nfluorex[DRUG(PHARMA)]
Sip	uleucel-T[DRUG(PHARMA)]
Ipil	imumab[DRUG(PHARMA)]
del	amanid[DRUG(PHARMA)]
bet	ahstine[DRUG(PHARMA)]
bet	ahistine[DRUG(PHARMA)]
Bet	ahistin[DRUG(PHARMA)]
nal	mefene[DRUG(PHARMA)]
imi	quimod[DRUG(PHARMA)]
rio	ciguat[DRUG(PHARMA)]

Annotation and Extraction of Named-Entities

- Annotating documents with StanfordNLP NE Tagger
- Annotations in

- Unique entitie Examples for new entities:
 - Entities fr INSULIN
 - Entirely n INSULIN DEGLUDEC INSULIN ISOPHANE

rm	
ramin	e[DRUG(PHARMA)]
nflura	mine[DRUG(PHARMA)]
orex[DRUG(PHARMA)]
ucel-1	[DRUG(PHARMA)]
imab[DRUG(PHARMA)]
anid[DRUG(PHARMA)]
stine[DRUG(PHARMA)]
istine	[DRUG(PHARMA)]
istin[[DRUG(PHARMA)]
fene[DRUG(PHARMA)]
mod[[DRUG(PHARMA)]
uat[D	RUG(PHARMA)]

Creating a co-occurrence network

- Counting co-occurrences of named entities using Term Cooccurrence Counter
- For each named-entity a node will be created
- Co-occurring named-entities will be connected by an edge
- Features to be visualized in network:
 - First level of ATC code as node color
 - Entities from dictionary as circles
 - Additionally recognized entities as squares

T Terml	T Term2	Document
bortezomib[DRUG(PHARMA)]	trastuzumab[DRUG(PHARMA)]	1
carfilzomib[DRUG(PHARMA)]	trastuzumab[DRUG(PHARMA)]	1
bortezomib[DRUG(PHARMA)]	carfilzomib[DRUG(PHARMA)]	1
carfilzomib[DRUG(PHARMA)]	ixazomib[DRUG(PHARMA)]	1
bortezomib[DRUG(PHARMA)]	ixazomib[DRUG(PHARMA)]	1

Creating a co-occurrence network

- Nodes to create the network
 - Network Creator node
 - Object Inserter node
 - (Multi) Feature Inserter node
 - Network Viewer (JavaScript)

Object Inserter

- Used to add nodes and edges to a network
- Node id column: Column of named-entities
- Second node id column: Co-occurring named-entities
- Edges are set automatically

	Options Advanced Options Flow Variables Memory Policy Node settings Node id column: (opt.) S Drug name 1 Node label column: (opt.) ?
Object Inserter	Second node id column: (opt.) S Drug name 2 Second node label column: (opt.) ? <none></none>
	Edge id column: (opt.) SEdgeID Edge label column: (opt.) ? <none> Create directed edges Weight settings</none>
	○ None ○ Default ⑧ Column Default weight: 1.0 → Weight column: 1 Document cooccurrence ▼ All nodes have same weight

Feature Inserter

- Used to set (visual) properties for a network
- Name: name of property (can be selected by Viewer nodes)
- Type: type of property
- Value column: Column of previously defined colors to set for nodes or edges

	Options Flow Variables Memory Policy
	D settings
	Edge id column: ? <none> Vode id column: S Drug Name V</none>
Feature Inserter	Feature settings
	Name column: ? <none> Type column: ? <none></none></none>
	Name: Color Type: color
	Value column: Color Default value:

Network Viewer (JavaScript)

- Provides different algorithms to layout the network
 - Can be selected interactively in the view
- Set node shape, color, outline color etc.
- Possibility to generate an image

	Representation				
	Node shape:	Shape 💌	Default shape:	Rectangle 🗸	
Network Viewer (JavaScript)	Node fill color:	Color	Default fill color:	Change	
	Node outline color:	<none></none>	Default outline color:	Change	
	Node size feature:	<none></none>	Default node size:	30 -	
	Node outline width:	<none></none>	Default node outline width:	1 *	

Named-Entity Co-Occurrence Network

Final network consist of 1.521 nodes and 46.134 edges

Extracting subgraphs

- Aim is to extract subgraphs to validate ATC prediction
- Extracting connected components of newly identified namedentities and their first neighborhood of known named-entities

Subgraphs

Summary

- What we learned:
 - Training an NER model
 - Creating a co-occurrence network
 - Extracting and visualizing subgraphs
- Note: This can be applied to any other domain

KNIME Books

Course books are available on KNIME Press https://www.knime.com/knimepress

Download your free copy by using the code: **FALL-SUMMIT-WORKSHOP**

Thank you for joining!

