
Fast Tables:
The Columnar Table Backend

November 20, 2020

#KNIMESummit

Marc Bux

1



© 2020 KNIME AG. All rights reserved.

Fast Tables

 Complete rewrite of KNIME‘s table storage backend

 To be released in Labs with AP 4.3



© 2020 KNIME AG. All rights reserved.

Fast Tables

 Complete rewrite of KNIME‘s table storage backend

 To be released in Labs with AP 4.3

 Preliminary Benchmark
 Some frequently used nodes

 2 GB Heap (-Xmx), 2 GB Off-Heap



© 2020 KNIME AG. All rights reserved.

Fast Tables

 Complete rewrite of KNIME‘s table storage backend

 To be released in Labs with AP 4.3

 Preliminary Benchmark
 Some frequently used nodes

 2 GB Heap (-Xmx), 2 GB Off-Heap



Agenda
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



Agenda
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



© 2020 KNIME AG. All rights reserved.

A Little History

 In KNIME 3.5 and earlier, all tables with more than 100k cells were 
synchronously persisted to disk

7



© 2020 KNIME AG. All rights reserved.

A Little History

 In KNIME 3.5 and earlier, all tables with more than 100k cells were 
synchronously persisted to disk

 KNIME 3.6 introduced the Parquet Column Store
 Major speedups when accessing only parts of a table (selected columns or a range of rows)

 Lesson learned:
It is the fact that we persist to disk (and not how we persist to disk) that costs performance

8



© 2020 KNIME AG. All rights reserved.

A Little History

 In KNIME 3.5 and earlier, all tables with more than 100k cells were 
synchronously persisted to disk

 KNIME 3.6 introduced the Parquet Column Store
 Major speedups when accessing only parts of a table (selected columns or a range of rows)

 Lesson learned:
It is the fact that we persist to disk (and not how we persist to disk) that costs performance

 KNIME 4.0 introduced an LRU cache for medium-sized tables
 Medium-sized: larger than 5k cells, but not too large to fit into the heap

 Lesson learned:
Keeping tables in the JVM heap for a long time puts a lot of pressure on garbage collection

9



© 2020 KNIME AG. All rights reserved.

A New Table Backend

 Apache Parquet / ORC: “column-oriented data storage formats of the Apache Hadoop ecosystem”

 Apache Arrow: “language-agnostic software framework for developing data analytics applications that 
process columnar data”

10



© 2020 KNIME AG. All rights reserved.

Preference Page: Old Versus New

11



© 2020 KNIME AG. All rights reserved.

Getting Started

12



© 2020 KNIME AG. All rights reserved.

Getting Started

13



© 2020 KNIME AG. All rights reserved.

Getting Started

14



Agenda
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



Agenda
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



© 2020 KNIME AG. All rights reserved.

Keep Primitive Data Primitive

 On 64-bit platforms with more than 32 GB heap space:
 Size of object header: 16 bytes

 Size of object reference: 8 bytes

 Total object size padded to a multiple of 8 bytes



© 2020 KNIME AG. All rights reserved.

Keep Primitive Data Primitive

 On 64-bit platforms with more than 32 GB heap space:
 Size of object header: 16 bytes

 Size of object reference: 8 bytes

 Total object size padded to a multiple of 8 bytes

 IntCell (single int field)
 24 bytes in memory, but information can be represented with 4 bytes



© 2020 KNIME AG. All rights reserved.

Keep Primitive Data Primitive

 On 64-bit platforms with more than 32 GB heap space:
 Size of object header: 16 bytes

 Size of object reference: 8 bytes

 Total object size padded to a multiple of 8 bytes

 IntCell (single int field)
 24 bytes in memory, but information can be represented with 4 bytes

 LocalDateTimeCell (LocalDateTime and LocalTime fields)
 80 bytes in memory, but information can be represented with 16 bytes



© 2020 KNIME AG. All rights reserved.

Keep Primitive Data Primitive

 On 64-bit platforms with more than 32 GB heap space:
 Size of object header: 16 bytes

 Size of object reference: 8 bytes

 Total object size padded to a multiple of 8 bytes

 IntCell (single int field)
 24 bytes in memory, but information can be represented with 4 bytes

 LocalDateTimeCell (LocalDateTime and LocalTime fields)
 80 bytes in memory, but information can be represented with 16 bytes

+ Reduce memory footprint, hold more data in memory

+ Less object creations, less work for garbage collector



© 2020 KNIME AG. All rights reserved.

JVM Heap and Garbage Collection

 JVM Heap
 Region of memory for dynamic memory allocation for Java objects
 Size controllable via -Xmx parameter

21



© 2020 KNIME AG. All rights reserved.

JVM Heap and Garbage Collection

 JVM Heap
 Region of memory for dynamic memory allocation for Java objects
 Size controllable via -Xmx parameter

 Garbage Collector
 Periodically iterates over heap and frees memory occupied by unreferenced objects

22



© 2020 KNIME AG. All rights reserved.

Cache Long-Living in-Memory Data Off-Heap

 JVM Heap
 Region of memory for dynamic memory allocation for Java objects
 Size controllable via -Xmx parameter

 Garbage Collector
 Periodically iterates over heap and frees memory occupied by unreferenced objects

− Non-primitive data must be serialized (converted to byte-array)

− More susceptible to memory leaks

23



© 2020 KNIME AG. All rights reserved.

Cache Long-Living in-Memory Data Off-Heap

 JVM Heap
 Region of memory for dynamic memory allocation for Java objects
 Size controllable via -Xmx parameter

 Garbage Collector
 Periodically iterates over heap and frees memory occupied by unreferenced objects

− Non-primitive data must be serialized (converted to byte-array)

− More susceptible to memory leaks

+ Take load off garbage collection

+ More controllable memory footprint

+ Reduce interference between caching of data and node operations

+ First step in enabling shared memory with other languages (e.g., Python)

24



© 2020 KNIME AG. All rights reserved.

Table Structure & Other Benefits

25

cell row column chunk batch



© 2020 KNIME AG. All rights reserved.

Table Structure & Other Benefits

26

cell

+ (A lot) less operations per cell, more operations per chunk

+ Cache chunks, as opposed to full tables

+ Cleaner, more maintainable code base

row column chunk batch



Agenda
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



Agenda
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



© 2020 KNIME AG. All rights reserved.

Cache Architecture & Configuration

29



© 2020 KNIME AG. All rights reserved.

Cache Architecture & Configuration

30



© 2020 KNIME AG. All rights reserved.

Cache Architecture & Configuration

31



© 2020 KNIME AG. All rights reserved.

Cache Architecture & Configuration

32



Agenda
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



Agenda
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



© 2020 KNIME AG. All rights reserved.

Minimal Data Source (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

final DataTableSpec spec = new DataTableSpec(new DataColumnSpecCreator("Column 0", IntCell.TYPE).createSpec());
final BufferedDataContainer container = exec.createDataContainer(spec);
for (int i = 0; i < 1000; i++) { 

final RowKey rowKey = RowKey.createRowKey((long)i);
final DataCell cell = new IntCell(i);
final DataRow row = new DefaultRow(rowKey, cell);
container.addRowToTable(row);

}
container.close();
return new BufferedDataTable[]{container.getTable()};

}

35



© 2020 KNIME AG. All rights reserved.

Minimal Data Source (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

final DataTableSpec spec = new DataTableSpec(new DataColumnSpecCreator("Column 0", IntCell.TYPE).createSpec());
final BufferedDataContainer container = exec.createDataContainer(spec);
for (int i = 0; i < 1000; i++) { 

final RowKey rowKey = RowKey.createRowKey((long)i);
final DataCell cell = new IntCell(i);
final DataRow row = new DefaultRow(rowKey, cell);
container.addRowToTable(row);

}
container.close();
return new BufferedDataTable[]{container.getTable()};

}

36



© 2020 KNIME AG. All rights reserved.

Minimal Data Source (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

final DataTableSpec spec = new DataTableSpec(new DataColumnSpecCreator("Column 0", IntCell.TYPE).createSpec());
final BufferedDataContainer container = exec.createDataContainer(spec);
for (int i = 0; i < 1000; i++) { 

final RowKey rowKey = RowKey.createRowKey((long)i);
final DataCell cell = new IntCell(i);
final DataRow row = new DefaultRow(rowKey, cell);
container.addRowToTable(row);

}
container.close();
return new BufferedDataTable[]{container.getTable()};

}

protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {
final DataTableSpec spec = new DataTableSpec(new DataColumnSpecCreator("Column 0", IntCell.TYPE).createSpec());
try (final RowContainer container = exec.createRowContainer(spec);

final RowWriteCursor cursor = container.createCursor()) { // multiple cursors in the future?
for (int i = 0; i < 1000; i++) {

final RowWrite row = cursor.forward();
final String rowKey = String.format("Row%d", i); // auto row keys in the future?
row.setRowKey(rowKey);
final IntWriteValue value = row.getWriteValue(0);
value.setIntValue(i);

}
return new BufferedDataTable[]{container.finish()};

}
}

37



© 2020 KNIME AG. All rights reserved.

Minimal Data Sink (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

try (final CloseableRowIterator iterator = inData[0].iterator()) {
while (iterator.hasNext()) {

final DataRow row = iterator.next();
final DataCell cell = row.getCell(0);
final IntValue value = (IntValue)cell;
final int i = value.getIntValue(); // do something with i

}
}
return new BufferedDataTable[0];

}

38



© 2020 KNIME AG. All rights reserved.

Minimal Data Sink (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

try (final CloseableRowIterator iterator = inData[0].iterator()) {
while (iterator.hasNext()) {

final DataRow row = iterator.next();
final DataCell cell = row.getCell(0);
final IntValue value = (IntValue)cell;
final int i = value.getIntValue(); // do something with i

}
}
return new BufferedDataTable[0];

}

39



© 2020 KNIME AG. All rights reserved.

Minimal Data Sink (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

try (final CloseableRowIterator iterator = inData[0].iterator()) {
while (iterator.hasNext()) {

final DataRow row = iterator.next();
final DataCell cell = row.getCell(0);
final IntValue value = (IntValue)cell;
final int i = value.getIntValue(); // do something with i

}
}
return new BufferedDataTable[0];

}

protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {
try (final RowCursor cursor = inData[0].cursor()) {

while (cursor.canForward()) {
final RowRead row = cursor.forward();
final IntValue value = row.getValue(0);
final int i = value.getIntValue(); // do something with i

}
}
return new BufferedDataTable[0];

}

40



Agenda
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



Summary
1. A New Table Backend for Improved 

Performance

2. Design Decisions and Benefits

3. Cache Architecture and Configuration

4. New Table API



© 2020 KNIME AG. All rights reserved.

Outlook

 The feature is in a fully usable (Labs) state

 Fully compatible with all nodes and data through a transition layer

 Please, use it now and share feedback with us

43



© 2020 KNIME AG. All rights reserved.

Outlook

 The feature is in a fully usable (Labs) state

 Fully compatible with all nodes and data through a transition layer

 Please, use it now and share feedback with us

 Next steps after the AP 4.3 release:
1. Additional improvements to become production-ready and squeeze out more performance gains

2. Make use of backend in streaming

3. Rewrite frequently used nodes to use new table API for yet more performance improvements

4. Review other places in org.knime.core where we currently loose performance

44


	Fast Tables:�The Columnar Table Backend
	Fast Tables
	Fast Tables
	Fast Tables
	Agenda
	Agenda
	A Little History
	A Little History
	A Little History
	A New Table Backend
	Preference Page: Old Versus New
	Getting Started
	Getting Started
	Getting Started
	Agenda
	Agenda
	Keep Primitive Data Primitive
	Keep Primitive Data Primitive
	Keep Primitive Data Primitive
	Keep Primitive Data Primitive
	JVM Heap and Garbage Collection
	JVM Heap and Garbage Collection
	Cache Long-Living in-Memory Data Off-Heap
	Cache Long-Living in-Memory Data Off-Heap
	Table Structure & Other Benefits
	Table Structure & Other Benefits
	Agenda
	Agenda
	Cache Architecture & Configuration
	Cache Architecture & Configuration
	Cache Architecture & Configuration
	Cache Architecture & Configuration
	Agenda
	Agenda
	Minimal Data Source (subject to change)
	Minimal Data Source (subject to change)
	Minimal Data Source (subject to change)
	Minimal Data Sink (subject to change)
	Minimal Data Sink (subject to change)
	Minimal Data Sink (subject to change)
	Agenda
	Summary
	Outlook
	Outlook

