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A Little History

 In KNIME 3.5 and earlier, all tables with more than 100k cells were 
synchronously persisted to disk

 KNIME 3.6 introduced the Parquet Column Store
 Major speedups when accessing only parts of a table (selected columns or a range of rows)

 Lesson learned:
It is the fact that we persist to disk (and not how we persist to disk) that costs performance

 KNIME 4.0 introduced an LRU cache for medium-sized tables
 Medium-sized: larger than 5k cells, but not too large to fit into the heap

 Lesson learned:
Keeping tables in the JVM heap for a long time puts a lot of pressure on garbage collection
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A New Table Backend

 Apache Parquet / ORC: “column-oriented data storage formats of the Apache Hadoop ecosystem”

 Apache Arrow: “language-agnostic software framework for developing data analytics applications that 
process columnar data”
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Preference Page: Old Versus New
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Keep Primitive Data Primitive

 On 64-bit platforms with more than 32 GB heap space:
 Size of object header: 16 bytes

 Size of object reference: 8 bytes

 Total object size padded to a multiple of 8 bytes

 IntCell (single int field)
 24 bytes in memory, but information can be represented with 4 bytes

 LocalDateTimeCell (LocalDateTime and LocalTime fields)
 80 bytes in memory, but information can be represented with 16 bytes

+ Reduce memory footprint, hold more data in memory

+ Less object creations, less work for garbage collector
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21



© 2020 KNIME AG. All rights reserved.

JVM Heap and Garbage Collection

 JVM Heap
 Region of memory for dynamic memory allocation for Java objects
 Size controllable via -Xmx parameter

 Garbage Collector
 Periodically iterates over heap and frees memory occupied by unreferenced objects

22



© 2020 KNIME AG. All rights reserved.

Cache Long-Living in-Memory Data Off-Heap
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Cache Long-Living in-Memory Data Off-Heap

 JVM Heap
 Region of memory for dynamic memory allocation for Java objects
 Size controllable via -Xmx parameter

 Garbage Collector
 Periodically iterates over heap and frees memory occupied by unreferenced objects

− Non-primitive data must be serialized (converted to byte-array)

− More susceptible to memory leaks

+ Take load off garbage collection

+ More controllable memory footprint

+ Reduce interference between caching of data and node operations

+ First step in enabling shared memory with other languages (e.g., Python)
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Table Structure & Other Benefits
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Table Structure & Other Benefits
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cell

+ (A lot) less operations per cell, more operations per chunk

+ Cache chunks, as opposed to full tables

+ Cleaner, more maintainable code base

row column chunk batch
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Minimal Data Source (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

final DataTableSpec spec = new DataTableSpec(new DataColumnSpecCreator("Column 0", IntCell.TYPE).createSpec());
final BufferedDataContainer container = exec.createDataContainer(spec);
for (int i = 0; i < 1000; i++) { 

final RowKey rowKey = RowKey.createRowKey((long)i);
final DataCell cell = new IntCell(i);
final DataRow row = new DefaultRow(rowKey, cell);
container.addRowToTable(row);

}
container.close();
return new BufferedDataTable[]{container.getTable()};

}
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Minimal Data Source (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

final DataTableSpec spec = new DataTableSpec(new DataColumnSpecCreator("Column 0", IntCell.TYPE).createSpec());
final BufferedDataContainer container = exec.createDataContainer(spec);
for (int i = 0; i < 1000; i++) { 

final RowKey rowKey = RowKey.createRowKey((long)i);
final DataCell cell = new IntCell(i);
final DataRow row = new DefaultRow(rowKey, cell);
container.addRowToTable(row);

}
container.close();
return new BufferedDataTable[]{container.getTable()};

}

protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {
final DataTableSpec spec = new DataTableSpec(new DataColumnSpecCreator("Column 0", IntCell.TYPE).createSpec());
try (final RowContainer container = exec.createRowContainer(spec);

final RowWriteCursor cursor = container.createCursor()) { // multiple cursors in the future?
for (int i = 0; i < 1000; i++) {

final RowWrite row = cursor.forward();
final String rowKey = String.format("Row%d", i); // auto row keys in the future?
row.setRowKey(rowKey);
final IntWriteValue value = row.getWriteValue(0);
value.setIntValue(i);

}
return new BufferedDataTable[]{container.finish()};

}
}
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Minimal Data Sink (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

try (final CloseableRowIterator iterator = inData[0].iterator()) {
while (iterator.hasNext()) {

final DataRow row = iterator.next();
final DataCell cell = row.getCell(0);
final IntValue value = (IntValue)cell;
final int i = value.getIntValue(); // do something with i

}
}
return new BufferedDataTable[0];

}
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Minimal Data Sink (subject to change)
protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {

try (final CloseableRowIterator iterator = inData[0].iterator()) {
while (iterator.hasNext()) {

final DataRow row = iterator.next();
final DataCell cell = row.getCell(0);
final IntValue value = (IntValue)cell;
final int i = value.getIntValue(); // do something with i

}
}
return new BufferedDataTable[0];

}

protected BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext exec) throws Exception {
try (final RowCursor cursor = inData[0].cursor()) {

while (cursor.canForward()) {
final RowRead row = cursor.forward();
final IntValue value = row.getValue(0);
final int i = value.getIntValue(); // do something with i

}
}
return new BufferedDataTable[0];

}
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Outlook

 The feature is in a fully usable (Labs) state

 Fully compatible with all nodes and data through a transition layer

 Please, use it now and share feedback with us
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Outlook

 The feature is in a fully usable (Labs) state

 Fully compatible with all nodes and data through a transition layer

 Please, use it now and share feedback with us

 Next steps after the AP 4.3 release:
1. Additional improvements to become production-ready and squeeze out more performance gains

2. Make use of backend in streaming

3. Rewrite frequently used nodes to use new table API for yet more performance improvements

4. Review other places in org.knime.core where we currently loose performance
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