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OPTIMIZED PREDICTIVE PLANNING WITH KNIME
FROM BUSINESS PROBLEM TO MODELING AND IMPLEMENTATION
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= Manuell planning time is too high in relation to the budget
= Consideration of the planning part with the highest resource requirements and lowest validity
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DECISION ELEMENTS

Regression
Modell

Cluster &
Similarities

® Probability
of orders
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EXAMPLES OF UNDERLYING DATA

Customer Dimension
= Sales Region

= |etter of Intent
True/False

System Information
= Duration per Stage
= Number of offer

versions ¢

Time Dimension

= Quarter of the planned
project start

= Condition per L'S
Stage '

Financial Information
= project volume
= term of contract

€

Technology & Portfolio
= technology portfolio

= |TIL Type B
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EVOLUTION OF THE MODEL FROM SIMPLE TO COMPLEX

1 Random Forest Learner 2 Python & Keras Network Learner

Random Forest Learner

DL Python Keras Hetwork
(deprecated) Network Creator Learner
>
S ——
e l — P
- | —F".
|
WIN / Loss Network | WIN/Loss

Classification Initialization l Classification
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EVOLUTION OF THE MODEL FROM SIMPLE TO COMPLEX

1 Random Forest Learner 2 Python & Keras Network Learner

Easy to implement Retrain optimizes the existing model
® Can handle categorical values ® Can recognize even complex relationships
® No special data preparation required ® Stable result even after retrain

® Successful training even with smaller data sets

Retrain creates a new model each time High resource requirements for training
© Small changes in the training data set can have a big © Special data preparation required
impact on the model. © Scaling to range from -1 to 1 required

© Requires sufficient data for initial training
(approx. 1,000 data rows per feature)
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PLATFORM ARCHITECTURE




INTEGRATION INTO DATA WAREHOUSE

3
historical ETL KNIME
store server

ETL ETL

raw data
store

ETL

-

metadata store

m “ starttime last successfull extraction time

[ 1 || raw_data_workilow || 2019:02-25 00:00:00.0000000 2019-02-25 00:10:00.0000000 |
[ 2 || nistorical_workiiow || 2019-02-25 00:10:01.0000000 || 2019-02-25 00:20:00.0000000 |
[ 3 || KNIME_workiow || 2019:02-25 00:25:00.0000000 ||  2019-02-25 00:50:00.0000000 |
[ 4 || raw_data_workfiow || 2019-02-25 01:00:00.0000000 || 2019-0225 01:10:00.0000000 |

= execution times of individual Extract Load Transform (ETL) processes are defined in metadata management

= each transaction is traceable system-wide

= workflows of the individual processes read metadata, metadata controls workflows of individual processes
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ADDITIONAL FRAMEWORKS SUPPORTING DEEP LEARNING

= PYTHON & ANACONDA
ﬁ P = Installation of Python & custom Anaconda environment
| ~) = Defining the Uniform Configuration for the KNIME Server Executor
§ ANACONDA
’ TENSORFLOW
| N \ = Underlying framework
KNIME r = Currently as CPU version, GPU planned 2nd half of 2019

Server |
| KERAS

= Implemented with Tensorflow backend
Keras
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OPTIMIZED PREDICTIVE PLANNING WITH KNIME
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-> Increase of accuracy of forecast and decrease of resources needed
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