
6 fault lines of deploying
analytical models
& how to address them
with ModelOps

In 2020, a televised Scottish football game between Inverness and

Ayr United had fans, worldwide, cursing at their television sets.

Except it wasn’t because of a tight score, a poor referee call or foul

play. It was because of a malfunctioning machine learning model.

The cameras, trained to identify and stay focused on a moving

soccer ball, were instead focusing on the bald head of a player –

missing the action of the game entirely.

So what went wrong? It could be that the model wasn’t trained

on enough data–there weren’t enough images of soccer balls and

humans. Perhaps it wasn’t trained on the right data–there weren’t

enough bald heads in the data set. Perhaps the model worked

perfectly on the test data set, but failed to maintain accuracy in

production. Perhaps there was model drift–when the model was

trained, it was less fashionable to shave your head, and thus there

was less likelihood of a bald head.

Getting a machine learning model to work in the wild–i.e., regularly

provide predictions on new data–is not easy. The process of taking

a model and making it available for software or people to regularly

access is known as the “deployment” or the “productionization” of

models. And it’s not made easier with a large AI initiative budget

or the number of data science PhDs in your organization. The

practical application of analytics doesn’t stop at the “science” of

developing a model.

https://www.google.com/url?q=https://www.iflscience.com/ai-camera-ruins-soccar-game-for-fans-after-mistaking-referees-bald-head-for-ball-57628&sa=D&source=docs&ust=1691160960923121&usg=AOvVaw2sPzSqzf9xIe9tU_Tpu5Jf

Productionization requires many steps under the hood. In many

companies that are deploying a handful of models, only a few data

and IT people are concerned about this process on a case by case

basis. After developing their model that works on historical data, the

team needs to (1) test the performance of their model on test data,

(2) validate that the model complies with internal standards and

regulations, and, ultimately (3) rework and prepare the model such

that it can easily be invoked by a user or system. And even once

the model is in a production environment, the work is still not over.

Data and IT teams need to keep an eye (or “monitor”) that the model

continues to perform, and that it doesn’t, for instance, confuse a bald

head with a soccer ball.

Deploying a model is a complex, cross-disciplinary project involving

data and IT experts that takes weeks if not months or quarters to

pull off. Making errors in this process, however, can have severe

consequences, costing a company its reputation, its bottom line or

even posing an existential threat.

Over time, however, line of business teams and stakeholders get tired

of waiting weeks for each solution. Despite the incredible complexity

of building and deploying models, data teams get pressure to increase

the time-to-value of their models, and solve more business problems

in the organization.

It’s at this point that data teams need to start thinking about

ModelOps–or systemizing and automating the process of

productionizing models.

46 fault lines of deploying analytical models

Identifying fault lines as the
first step towards ModelOps

Starting to think about building a ModelOps process can feel

overwhelming, but it’s really just taking small steps to start minimizing the

opportunity for error and reducing decisions made on an ad hoc basis.

You don’t need to replace every manual process tomorrow, but you can

start identifying where common issues might arise and putting in place

standards and important safeguards.

At first, taking these precautions will improve the efficiency–or the time-

to-value–of the models produced by data experts. If your team is already

taking a low-code approach to model building, then in the long term, it’ll also

decrease the amount of software infrastructure and scripting know-how

necessary to deploy a model in the first place, opening up data science

to more people in the organization. Carefully managed, this means more

data science bandwidth, encouraging more data-driven decisioning. At an

organizational level, this takes the pressure off data experts, freeing them

from solving basic automation and prediction problems, and allowing them to

spend more time researching and adopting new, innovative technologies.

https://www.knime.com/

56 fault lines of deploying analytical models

In this e-Guide, we identify 6 common fault lines that can be addressed

by starting to build a ModelOps process:

1. Poor model choice and parameterization

2. Inconsistency between “train” and “predict” models

3. Security holes

4. Undetected model drift

5. No record of changes to models

6. Over-reliance on software infrastructure know-how

66 fault lines of deploying analytical models

1. Poor model choice
and parameterization

One of the first and most obvious things that can go

wrong is that after training, the quality of the model

is not accurately assessed. For example, someone

inexperienced with machine learning models might train

and validate their model on the same data set. As a

result, in the validation step, the model isn’t being tested

for correctly generalizing for “new” data.

There are many reasons for a model underperforming,

like poor outlier handling, over and undersampling,

overcorrecting for bias, etc. Regardless, the model

developer would want to know that their model is

overfitting their testing dataset as early as possible, to

avoid doing too much work to prepare it for deployment.

To catch this early, you can set an automated process to

ensure every model developer is checking for overfitting.

Ensure that each model has a training data set, a testing

data set, and a validation data set – and, if necessary–

put in place requirements for more splits for the cross

validation of ML models. You can further minimize a

team’s errors by setting up a central repository with re-

usable cross-validation methods that model developers

can adapt as needed.

76 fault lines of deploying analytical models

2. Inconsistency between
trained and production
models

For many teams, the process of productionization often involves

reworking, or even entirely re-coding their model for production.

After creating their models and realizing their development

environment isn’t designed for running models in production, data

scientists often turn to their software engineering counterparts to

re-create the model so that it can be easily invoked as a service by

another software.

The result is then having to worry about two models: one that

was used for training, and one that’s used in production. It’s not

uncommon for small discrepancies to arise when reworking the

model, especially when it was reworked by someone other than the

person who built it. The result is having to maintain both packages

and knowing what and how to make distinct changes to the

production package, as the need arises.

86 fault lines of deploying analytical models

One aspect that’s often overlooked is that the prediction package needs

to comprise not just the model itself, but also all the pre- and post-

processing steps required to get from raw data to meaningful prediction.

One solution is to build out a mechanism to derive a prediction package

from the training model. Select low-code, end-to-end platforms for data

science include this functionality (known as “integrated deployment”) out-

of-the-box, automating deployment and ensuring that models can never

get out of sync.

3. Security holes

Another common risk is inadvertently opening up access to sensitive

information, like personal data that isn’t meant for a wider audience. This

can be done inside an organization, inadvertently, giving the wrong users

access to data or data products. Or, worse, data can be opened up to 3rd

parties outside the organization.

Many data teams consistently experiment with new techniques

and test out new libraries to leverage the most state-of-the-art

developments. However, installing packages provided by 3rd party

contributors are often not checked for license or security holes.

Malicious players can use packages to inject command executions,

retrieve sensitive information under the guise of “debugging,” or just

install malicious packages.

https://www.knime.com/integrated-deployment

96 fault lines of deploying analytical models

Setting up tests to ensure models are built on current (rather than

outdated) packages, as well as putting in place checks for common

vulnerabilities and exposures, are easy preventative steps you can add

into your productionization process. You can also choose to separate

your dev, test and prod environments entirely, to make sure that any

malicious activity is contained.

You can also tighten security around the accessing of databases,

defining when (if ever) it makes sense for authentication to be passed

through a script. Ensure that individual credentials are not shared

with anyone that they shouldn’t be. Here, again, you can share best

practices in a library for how to give access to specific datasets.

106 fault lines of deploying analytical models

4. Undetected model drift

Machine learning models are built on a number of assumptions and are

trained on a historical data set. If something about those assumptions

changes, the model’s predictions become inaccurate–a phenomenon

known as model drift. For instance, a model might be trained to detect

fraud based on known suspicious activity. If fraudsters come up with

new phishing tactics, however, the model will fail to predict them. For this

reason, fraud detection models need to constantly be retrained.

The data expert who built the model typically has all the business and

technical context to determine whether the model has drifted. Yet, in

many cases, the data expert doesn’t have ongoing visibility into the

performance of the model in production.

Here, a couple of actions can be taken to improve this process. First,

the process can require that each model is deployed with a mechanism

that provides an accepted accuracy threshold. When the model doesn’t

perform, then an alert-based system can be instated to keep the data

expert in the loop. Second, a dedicated environment for retraining of the

model can be used to quickly adjust and re-deploy the solution.

116 fault lines of deploying analytical models

5. No record of changes
to models

When models are deployed ad-hoc by various team members, it’s

easy to sneak in a change to the model into production. Since many

data teams work with typical software development protocols, they

have mechanisms in place to version the code that created the

model. However, they lack the mechanisms to store and roll back to

previous model versions that had resulted from that code. Software

development allows for code version control, but doesn’t have the

same set up for storing models.

However, as the number of people who deploy data solutions grows,

it’s critical that a version control process that tracks changes and

enables you to roll back to previous versions of models is installed.

126 fault lines of deploying analytical models

6. Over-reliance on software
infrastructure know-how

When a data team is first formed, it’s often expected that data

scientists will own not only model development, but also model

productionization. Rare “unicorn” data scientists are expected to

not only be experts in statistics and machine learning, but also

learn about software infrastructure and become familiar with the

complexities of making a model available to systems and people

across the organization. Not only is this a misused resource,

squandering the time of fairly limited expertise–but it puts a lot of

pressure on a single individual to not make a single mistake in this

process. It can also result in costly and fragile setups.

Set up a process that makes productionization easy for data

scientists, while reducing the burden on IT. Here, an end-to-end

software for building and deploying data science solutions can make

a big difference.

136 fault lines of deploying analytical models

Preparing for scale

Despite what the term “ModelOps” might suggest, the process for

productionization doesn’t just apply to AI or ML models. It’s simply a way

to control and safeguard the use of data–whether it’s simply cleaning

and assembling datasets, building dashboards, or leveraging machine

learning techniques to make predictions.

While many teams try to set up a software development practice just to

productionize their models, others instead opt for a low-code/no-code

approach to building and deploying their analytical models.

An end-to-end platform like KNIME provides users with a single

environment to first build, then automatically deploy their analytical

models as data apps or REST APIs made available to the wider

organization. KNIME’s CDDS extension lets data scientists set up dev,

test, prod (or any number) of environments, create manual or automatic

testing and validation requirements–and, ultimately, monitor and retrain

their models. The extension is completely customizable to fit with any

organization’s unique governance and deployment practices.

https://www.knime.com/

146 fault lines of deploying analytical models

This approach eliminates the software development work that a

data expert has to do, and allows for IT to set controls without

burdening them to help with re-building and monitoring the model.

At the same time, this process, if set up right, empowers the data

and IT team to govern and scale deployment to more people, while

incorporating other expertise like compliance and legal.

In the end, your organization has many more data problems than it

has data scientists. Inevitably, data and IT teams need to prepare

for a future in which every desk worker can interact with data and

create insights for their wider department or organization.

The question is do you prepare now – or do you wait until your fault

lines cause damage?

https://www.knime.com/continuous-deployment-of-data-science

