
6 fault lines of deploying 
analytical models
& how to address them 
with ModelOps



In 2020, a televised Scottish football game between Inverness and 

Ayr United had fans, worldwide, cursing at their television sets. 

Except it wasn’t because of a tight score, a poor referee call or foul 

play. It was because of a malfunctioning machine learning model. 

The cameras, trained to identify and stay focused on a moving 

soccer ball, were instead focusing on the bald head of a player – 

missing the action of the game entirely.

So what went wrong? It could be that the model wasn’t trained 

on enough data–there weren’t enough images of soccer balls and 

humans. Perhaps it wasn’t trained on the right data–there weren’t 

enough bald heads in the data set. Perhaps the model worked 

perfectly on the test data set, but failed to maintain accuracy in 

production. Perhaps there was model drift–when the model was 

trained, it was less fashionable to shave your head, and thus there 

was less likelihood of a bald head. 

Getting a machine learning model to work in the wild–i.e., regularly 

provide predictions on new data–is not easy. The process of taking 

a model and making it available for software or people to regularly 

access is known as the “deployment” or the “productionization” of 

models. And it’s not made easier with a large AI initiative budget 

or the number of data science PhDs in your organization. The 

practical application of analytics doesn’t stop at the “science” of 

developing a model.  

https://www.google.com/url?q=https://www.iflscience.com/ai-camera-ruins-soccar-game-for-fans-after-mistaking-referees-bald-head-for-ball-57628&sa=D&source=docs&ust=1691160960923121&usg=AOvVaw2sPzSqzf9xIe9tU_Tpu5Jf


Productionization requires many steps under the hood. In many 

companies that are deploying a handful of models, only a few data 

and IT people are concerned about this process on a case by case 

basis. After developing their model that works on historical data, the 

team needs to (1) test the performance of their model on test data, 

(2) validate that the model complies with internal standards and 

regulations, and, ultimately (3) rework and prepare the model such 

that it can easily be invoked by a user or system. And even once 

the model is in a production environment, the work is still not over. 

Data and IT teams need to keep an eye (or “monitor”) that the model 

continues to perform, and that it doesn’t, for instance, confuse a bald 

head with a soccer ball. 

Deploying a model is a complex, cross-disciplinary project involving 

data and IT experts that takes weeks if not months or quarters to 

pull off. Making errors in this process, however, can have severe 

consequences, costing a company its reputation, its bottom line or 

even posing an existential threat. 

Over time, however, line of business teams and stakeholders get tired 

of waiting weeks for each solution. Despite the incredible complexity 

of building and deploying models, data teams get pressure to increase 

the time-to-value of their models, and solve more business problems 

in the organization. 

It’s at this point that data teams need to start thinking about 

ModelOps–or systemizing and automating the process of 

productionizing models.
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Identifying fault lines as the 
first step towards ModelOps

Starting to think about building a ModelOps process can feel 

overwhelming, but it’s really just taking small steps to start minimizing the 

opportunity for error and reducing decisions made on an ad hoc basis. 

You don’t need to replace every manual process tomorrow, but you can 

start identifying where common issues might arise and putting in place 

standards and important safeguards. 

At first, taking these precautions will improve the efficiency–or the time-

to-value–of the models produced by data experts. If your team is already 

taking a low-code approach to model building, then in the long term, it’ll also 

decrease the amount of software infrastructure and scripting know-how 

necessary to deploy a model in the first place, opening up data science 

to more people in the organization. Carefully managed, this means more 

data science bandwidth, encouraging more data-driven decisioning. At an 

organizational level, this takes the pressure off data experts, freeing them 

from solving basic automation and prediction problems, and allowing them to 

spend more time researching and adopting new, innovative technologies.

https://www.knime.com/


56 fault lines of deploying analytical models

In this e-Guide, we identify 6 common fault lines that can be addressed 

by starting to build a ModelOps process:

1. Poor model choice and parameterization

2. Inconsistency between “train” and “predict” models

3. Security holes

4. Undetected model drift

5. No record of changes to models

6. Over-reliance on software infrastructure know-how
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1. Poor model choice 
and parameterization

One of the first and most obvious things that can go 

wrong is that after training, the quality of the model 

is not accurately assessed. For example, someone 

inexperienced with machine learning models might train 

and validate their model on the same data set. As a 

result, in the validation step, the model isn’t being tested 

for correctly generalizing for “new” data. 

There are many reasons for a model underperforming, 

like poor outlier handling, over and undersampling, 

overcorrecting for bias, etc. Regardless, the model 

developer would want to know that their model is 

overfitting their testing dataset as early as possible, to 

avoid doing too much work to prepare it for deployment.

To catch this early, you can set an automated process to 

ensure every model developer is checking for overfitting. 

Ensure that each model has a training data set, a testing 

data set, and a validation data set – and, if necessary– 

put in place requirements for more splits for the cross 

validation of ML models. You can further minimize a 

team’s errors by setting up a central repository with re-

usable cross-validation methods that model developers 

can adapt as needed.
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2. Inconsistency between 
trained and production 
models

For many teams, the process of productionization often involves 

reworking, or even entirely re-coding their model for production. 

After creating their models and realizing their development 

environment isn’t designed for running models in production, data 

scientists often turn to their software engineering counterparts to 

re-create the model so that it can be easily invoked as a service by 

another software. 

The result is then having to worry about two models: one that 

was used for training, and one that’s used in production. It’s not 

uncommon for small discrepancies to arise when reworking the 

model, especially when it was reworked by someone other than the 

person who built it. The result is having to maintain both packages 

and knowing what and how to make distinct changes to the 

production package, as the need arises.
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One aspect that’s often overlooked is that the prediction package needs 

to comprise not just the model itself, but also all the pre- and post-

processing steps required to get from raw data to meaningful prediction. 

One solution is to build out a mechanism to derive a prediction package 

from the training model. Select low-code, end-to-end platforms for data 

science include this functionality (known as “integrated deployment”) out-

of-the-box, automating deployment and ensuring that models can never 

get out of sync.

3. Security holes 

Another common risk is inadvertently opening up access to sensitive 

information, like personal data that isn’t meant for a wider audience. This 

can be done inside an organization, inadvertently, giving the wrong users 

access to data or data products. Or, worse, data can be opened up to 3rd 

parties outside the organization.

Many data teams consistently experiment with new techniques 

and test out new libraries to leverage the most state-of-the-art 

developments. However, installing packages provided by 3rd party 

contributors are often not checked for license or security holes. 

Malicious players can use packages to inject command executions, 

retrieve sensitive information under the guise of “debugging,” or just 

install malicious packages. 

https://www.knime.com/integrated-deployment


96 fault lines of deploying analytical models

Setting up tests to ensure models are built on current (rather than 

outdated) packages, as well as putting in place checks for common 

vulnerabilities and exposures, are easy preventative steps you can add 

into your productionization process. You can also choose to separate 

your dev, test and prod environments entirely, to make sure that any 

malicious activity is contained. 

You can also tighten security around the accessing of databases, 

defining when (if ever) it makes sense for authentication to be passed 

through a script. Ensure that individual credentials are not shared 

with anyone that they shouldn’t be. Here, again, you can share best 

practices in a library for how to give access to specific datasets.
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4. Undetected model drift

Machine learning models are built on a number of assumptions and are 

trained on a historical data set. If something about those assumptions 

changes, the model’s predictions become inaccurate–a phenomenon 

known as model drift. For instance, a model might be trained to detect 

fraud based on known suspicious activity. If fraudsters come up with 

new phishing tactics, however, the model will fail to predict them. For this 

reason, fraud detection models need to constantly be retrained. 

The data expert who built the model typically has all the business and 

technical context to determine whether the model has drifted. Yet, in 

many cases, the data expert doesn’t have ongoing visibility into the 

performance of the model in production. 

Here, a couple of actions can be taken to improve this process. First, 

the process can require that each model is deployed with a mechanism 

that provides an accepted accuracy threshold. When the model doesn’t 

perform, then an alert-based system can be instated to keep the data 

expert in the loop. Second, a dedicated environment for retraining of the 

model can be used to quickly adjust and re-deploy the solution.
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5. No record of changes 
to models

When models are deployed ad-hoc by various team members, it’s 

easy to sneak in a change to the model into production. Since many 

data teams work with typical software development protocols, they 

have mechanisms in place to version the code that created the 

model. However, they lack the mechanisms to store and roll back to 

previous model versions that had resulted from that code. Software 

development allows for code version control, but doesn’t have the 

same set up for storing models.

However, as the number of people who deploy data solutions grows, 

it’s critical that a version control process that tracks changes and 

enables you to roll back to previous versions of models is installed.
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6. Over-reliance on software 
infrastructure know-how

When a data team is first formed, it’s often expected that data 

scientists will own not only model development, but also model 

productionization. Rare “unicorn” data scientists are expected to 

not only be experts in statistics and machine learning, but also 

learn about software infrastructure and become familiar with the 

complexities of making a model available to systems and people 

across the organization. Not only is this a misused resource, 

squandering the time of fairly limited expertise–but it puts a lot of 

pressure on a single individual to not make a single mistake in this 

process. It can also result in costly and fragile setups. 

Set up a process that makes productionization easy for data 

scientists, while reducing the burden on IT. Here, an end-to-end 

software for building and deploying data science solutions can make 

a big difference.
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Preparing for scale 

Despite what the term “ModelOps” might suggest, the process for 

productionization doesn’t just apply to AI or ML models. It’s simply a way 

to control and safeguard the use of data–whether it’s simply cleaning 

and assembling datasets, building dashboards, or leveraging machine 

learning techniques to make predictions. 

While many teams try to set up a software development practice just to 

productionize their models, others instead opt for a low-code/no-code 

approach to building and deploying their analytical models. 

An end-to-end platform like KNIME provides users with a single 

environment to first build, then automatically deploy their analytical 

models as data apps or REST APIs made available to the wider 

organization. KNIME’s CDDS extension lets data scientists set up dev, 

test, prod (or any number) of environments, create manual or automatic 

testing and validation requirements–and, ultimately, monitor and retrain 

their models. The extension is completely customizable to fit with any 

organization’s unique governance and deployment practices.

https://www.knime.com/
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This approach eliminates the software development work that a 

data expert has to do, and allows for IT to set controls without 

burdening them to help with re-building and monitoring the model. 

At the same time, this process, if set up right, empowers the data 

and IT team to govern and scale deployment to more people, while 

incorporating other expertise like compliance and legal. 

In the end, your organization has many more data problems than it 

has data scientists. Inevitably, data and IT teams need to prepare 

for a future in which every desk worker can interact with data and 

create insights for their wider department or organization. 

The question is do you prepare now – or do you wait until your fault 

lines cause damage?

https://www.knime.com/continuous-deployment-of-data-science

