External KNIME Courses

Courses run by trusted KNIME experts and supported with frequent guest lectures by KNIME employees, lecture materials and practical exercises, curriculum support, and more.

Contact Us
knime-course-learn-data-science
KNIME Analytics Platform is a great tool for teaching and we are supporting a community of educators in delivering their courses.

Online Courses

Introduction to Machine Learning with KNIME (LinkedIn Learning)

Instructor: Keith McCormick

In this course, expert Keith McCormick shows how KNIME supports all the phases of the Cross Industry Standard Process for Data Mining (CRISP-DM) in one platform. Get up and running quickly—in 15 minutes or less—or stick around for the more in-depth training covering merging and aggregation, modeling, and data scoring. Plus, learn how to increase the power of KNIME with extensions and integrate R and Python.

Register Here

Data Science Foundations: Data Assessment for Predictive Modeling (Linkedin Learning)

Instructor: Keith McCormick

CRISP-DM, the cross-industry standard process for data mining, is composed of six phases. Most new data scientists rush to modeling because it's the phase in which they have the most training. But whether the project succeeds or fails is actually determined far earlier. This course introduces a systematic approach to the data understanding phase for predictive modeling. Instructor Keith McCormick teaches principles, guidelines, and tools, such as KNIME and R, to properly assess a data set for its suitability for machine learning. The course includes case studies and best practices, as well as challenge and solution sets for enhanced knowledge retention. 

Register Here

Code Free Data Science (Coursera)

Instructor: Nathasha Balac

The Code Free Data Science class is designed for learners seeking to gain or expand their knowledge in the area of Data Science. Participants will receive the basic training in effective predictive analytic approaches accompanying the growing discipline of Data Science without any programming requirements. Machine Learning methods will be presented by utilizing the KNIME Analytics Platform to discover patterns and relationships in data. Predicting future trends and behaviors allows for proactive, data-driven decisions.

Register Here

Data Analyzing and Machine Learning Hands-on with KNIME (Udemy)

Instructor: Barbora Stetinova

The goal of this course is to gain knowledge how to use open source Knime Analytics Platform for data analysis and machine learning predictive models on real data sets. We will create machine learning models within the standard machine learning process way, which consists from:

  • acquiring data by reading nodes into the KNIME software (the data frames are available in this course for download)
  • pre-processing and transforming data to get well prepared data frame for the prediction
  • visualizing data with KNIME visual nodes (we will create basic plots and charts to have clear picture about our data)
  • creating machine learning predictive models and evaluating them
Register Here

KNIME - A Crash Course for Beginners (Udemy)

Instructor: Dan We

This is a hands-on course, so I expect you to “data prep” along with me. After finishing our data prep we briefly (!) cover the visualization part where we visualize our prepared dataset in Tableau and in Power BI Desktop (yes we briefly cover both tools and it is up to you which you prefer!)

Finally, we also briefly cover the predictive analytics capabilities of KNIME and see how easy Machine Learning in KNIME can be (again a brief introduction and no coding required!)

This course is practical and consists of a case study where you can and should follow along to solve tasks.

Register Here

Are you missing your course or are you interested in setting up a new course with KNIME?

University Courses

Data Science Algorithms and Tools (University of Reading)

Lecturer: Dr. Carmen Lam

Automated data collection and mature database technology lead to tremendous amounts of data stored in databases, data warehouses and other information repositories. In this context, automated data analysis and data modelling tools and algorithms (Data Mining) are becoming essential components to any information system. Application areas of these techniques include scientific computing, intelligent business, direct marketing, customer relationship management, market segmentation, store shelf management, data warehouse management, fraud detection in e-commerce and in credit card transactions, etc.

Aims: The study of fundamental techniques and tools for data manipulation and transformation, and for data mining algorithms classification, regression, clustering, association rule mining. In particular, one of the leading platforms for Data Science and Machine Learning, KNIME, will be introduced and adopted for practical activities. 

Course Details

Predictive Analytics Technologies (Oklahoma State University)

Lecturer: Dr. Dursun Delen

The main objective of this course is for the student to develop an in-depth understanding and appreciation of the role of computer-based information systems in direct support of managerial decision making (nowadays commonly called as business analytics, business intelligence, and data science). Specifically, at the end of this course students should develop knowledge and hands-on skills about:

  • Business intelligence, business analytics, data science, big data, and decision support systems
  • Real-world data, data integrations, and data preprocessing
  • Data visualization, data warehousing, and visual analytics
  • Using KNIME for data, text, and Web mining for knowledge discovery
Contact Lecturer

Business And Marketing Analytics (LUISS Guido Carli University)

Lecturer: Dr. Francisco Villarroel

The course aims at providing a wide knowledge of relevant and new research methods based on customer and market data, to enhance marketing decision making. Students will be learning from state-of-the-art examples using large datasets and the KNIME  Analytics platform. The course will take a hybrid approach aiming (1) to contribute to students' technical understanding of different methods, and (2) to provide insights into how to derive and communicate market implications for decision making.

Course Details

Are you missing your course or are you interested in setting up a new course with KNIME?

LinkedInTwitterShare