Webinar

Codeless Deep Learning for Sequential Data

April 20, 2021 - Online
Codeless Deep Learning for Sequential Data

This webinar on deep learning moves on from building and training a simple neural network to implementing special deep learning architectures for sequential data, called recurrent neural networks.

Sequential data is all around us. Language as a sequence of words, time series as a sequence of numerical values like stock prices or sensor data, or signals as a sequence of samples from a sound wave, to give you just a few examples. This kind of data has special requirements when it comes to deep learning architectures.
 

What are the goals of this webinar?

In this webinar we start with inspecting different requirements of sequential data and how deep learning models can handle them. We’ll look at different use cases, which have all been implemented without code, including demand prediction with multivariate time series and a number of text based applications.
 

Who is this webinar for?

We welcome anyone interested in deep learning to join us! It will be of particular benefit to data analysts, data scientists, and deep learning developers who want to take advantage of the KNIME GUI to build, train, test, and deploy deep learning networks.
 

Who are the speakers?

Join Kathrin Melcher, data scientist at KNIME and Rosaria Silipo, principal data scientist at KNIME and head of the Evangelism Team, who wrote the book "Codeless Deep Learning with KNIME",  which is published by Packt Publishing and available for purchase on Amazon.

NOTE: This webinar will be held on Tuesday April 20, 2021 at 5 PM - 5:45 PM UTC +1 (Berlin) which is 10 AM - 10:45 AM UTC -6 (Chicago).

FAQ
How do I join the webinar?

You’ll receive a zoom link with your registration confirmation. Make sure you have a stable internet connection!

Will I be able to ask questions?

Absolutely - fire away!

Where do I find the latest version of KNIME Analytics Platform?

Download the latest free, open source version of KNIME here: knime.com/download

What other resources will help me to get started in KNIME?
You might also like Show all events